Homework 5 Solutions

3.6.7 Give a counterexample to show that the given transformation is not a linear transformation:

$$
T\binom{x}{y}=\binom{y}{x^{2}}
$$

Solution. Note:

$$
\begin{aligned}
& T\binom{0}{1}=\binom{0}{1} \\
& T\binom{0}{2}=\binom{0}{4}
\end{aligned}
$$

So:

$$
T\binom{0}{1}+T\binom{0}{2}=\binom{0}{5}
$$

But

$$
T\left(\binom{0}{1}+\binom{0}{2}\right)=T\binom{0}{3}=\binom{0}{9}
$$

3.6.44 Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Show that T maps straight lines to a straight line or a point.
Proof. In \mathbb{R}^{3} we can represent a line as:

$$
\mathbf{x}=t \mathbf{m}+\mathbf{b}
$$

Where $\mathbf{m} \neq \mathbf{0}$. So,

$$
T(t \mathbf{m}+\mathbf{b})=t(T \mathbf{m})+T(\mathbf{b})
$$

If $T \mathbf{m}=0$ (i.e. $\mathbf{m} \in \operatorname{ker}(T)$) then T sends the line to a point, namely $T \mathbf{b}$. Otherwise, $T \mathbf{m}=\mathbf{k} \neq \mathbf{0}$ and $T \mathbf{b}=\mathbf{c}$ So we have the line gets sent to

$$
t \mathbf{k}+\mathbf{c}
$$

which is a line in \mathbb{R}^{3}.
3.6.53 Prove that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation if and only if

$$
(*) \quad T\left(c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}\right)=c_{1} T\left(\mathbf{v}_{\mathbf{1}}\right)+c_{2}\left(\mathbf{v}_{\mathbf{2}}\right)
$$

for all vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}} \in \mathbb{R}^{n}$ and scalars c_{1}, c_{2}.
Proof. (\Leftarrow) We need to show that T respects scalar multiplication and scalar multiplication.

- First we show that for any \mathbf{x}, \mathbf{y} we have $T(\mathbf{x}+\mathbf{y})=T \mathbf{x}+T \mathbf{y}$. From the property ($*$) where $c_{1}=c_{2}=1$ and $\mathbf{v}_{\mathbf{1}}=\mathbf{x}$ and $\mathbf{v}_{\mathbf{2}}=\mathbf{y}$ we have that

$$
T(1 \mathbf{x}+1 \mathbf{y})=1 T \mathbf{x}+1 T \mathbf{y}=T \mathbf{x}+T \mathbf{y}
$$

- Need we show that for any \mathbf{x} and scalar c we have $T(c \mathbf{x})=c T \mathbf{x}$. We use $(*)$ for $c_{1}=c, c_{2}=0$, $\mathbf{v}_{\mathbf{1}}=\mathbf{v}_{\mathbf{2}}=\mathbf{x}$ and we get:

$$
T(c \mathbf{x}+0 \mathbf{x})=c T \mathbf{x}+0 T \mathbf{x}=c T \mathbf{x}
$$

(\Rightarrow) Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}} \in \mathbb{R}^{n}$ and c_{1}, c_{2} be scalars. Then we want to show

$$
T\left(c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}\right)=c_{1} T\left(\mathbf{v}_{\mathbf{1}}\right)+c_{2}\left(\mathbf{v}_{\mathbf{2}}\right)
$$

Well, $T\left(c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}\right)=T\left(c_{1} \mathbf{v}_{\mathbf{1}}\right)+T\left(c_{2} \mathbf{v}_{\mathbf{2}}\right)$ by the sum property of linearity. Then $T\left(c_{1} \mathbf{v}_{\mathbf{1}}\right)+$ $T\left(c_{2} \mathbf{v}_{\mathbf{2}}\right)=c_{1} T \mathbf{v}_{\mathbf{1}}+c_{2} T \mathbf{v}_{\mathbf{2}}$ by the scalar proprety. This is what we wanted.
4.1.12 Show that $\lambda=3$ is an eigenvalue for the following matrix, and find one eigenvector.

$$
A=\left(\begin{array}{ccc}
3 & 1 & -1 \\
0 & 1 & 2 \\
4 & 2 & 0
\end{array}\right)
$$

Solution. Consider $A-3 I$:

$$
A-3 I=\left(\begin{array}{ccc}
0 & 1 & -1 \\
0 & -2 & 2 \\
4 & 2 & -3
\end{array}\right)
$$

Doing the elementary row operation of adding -2 times row 1 to row 2 we get:

$$
\left(\begin{array}{ccc}
0 & 1 & -1 \\
0 & -2 & 2 \\
4 & 2 & -3
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
0 & 1 & -1 \\
0 & 0 & 0 \\
4 & 2 & -3
\end{array}\right)
$$

This show that the matrix does not have full rank, so therefore has a nontrivial null space. This is enough to know that $\lambda=3$ is an eigenvalue. Continuing row reductions to rref:

$$
\left(\begin{array}{ccc}
1 & 0 & -1 / 4 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

We now just need to find some vector in the null space. Viewing this has a homogenious equation, we see that the solutions look like:

$$
t\left(\begin{array}{c}
1 / 4 \\
1 \\
1
\end{array}\right)
$$

These are all the eigenvectors. One particular eigenvector is $\left(\begin{array}{l}1 \\ 4 \\ 4\end{array}\right) 4$
4.1.24 Use determinants of 2×2 matrices to find the spectrum of the given matrix. Find the eigenspaces and then give bases for each eigenspace.

$$
A=\left(\begin{array}{ll}
0 & 2 \\
8 & 6
\end{array}\right)
$$

Solution. Consider the following matrix:

$$
A-\lambda I=\left(\begin{array}{cc}
-\lambda & 2 \\
8 & 6-\lambda
\end{array}\right)
$$

Calculating the determinant:

$$
\operatorname{det}(A-\lambda I)=-\lambda(6-\lambda)-16=\lambda^{2}-6 \lambda-16=(\lambda-8)(\lambda+2)
$$

The matrix is invertible if and only if the determinant is nonzero. Thus, this has a nontrivial null space only when the determinant is zero. Thus is has eigenvalues when the determinant is zero: $\lambda_{1}=8$, $\lambda_{2}=-2$.
We can then find eigenvectors by calculating the actual nullspace of $A-8 I$ and $A+2 I$. The former is the matrix:

$$
\left(\begin{array}{cc}
-8 & 2 \\
8 & -2
\end{array}\right)
$$

The nullspace of this matrix is:

$$
t\binom{1 / 4}{1}
$$

This is just a one dimensional space, so a basis for the eigenspace corresponding to 8 is just $\binom{1 / 4}{1}$ (or any nonzero multiple of this vector will do) And for the other, we get the matrix:

$$
\left(\begin{array}{ll}
2 & 2 \\
8 & 8
\end{array}\right)
$$

The nullspace of this matrix is:

$$
t\binom{1}{-1}
$$

This is just a one dimensional space, so a basis for the eigenspace corresponding to -2 is just $\binom{1}{-1}$ (or any nonzero multiple of this vector will do)
4.1.37 Show that the eigenvalues of the upper triangular matrix:

$$
A=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)
$$

are $\lambda=a$ and $\lambda=d$. Find the corresponding eigenspaces.
Solution. Consider $A-a I$.

$$
A-a I=\left(\begin{array}{cc}
0 & b \\
0 & d-a
\end{array}\right)
$$

This matrix has a nontrivial null space since it's rank is less than the number of columns. Moreover, assuming that $b \neq 0$ or $d-a \neq 0$, then the rank of the matrix is 1 , so it's nullspace is one dimensional given by:

$$
t\binom{1}{0}
$$

In the event both are zero, the rank is 0 , and it's nullspace is 2 dimensional and is given by:

$$
t\binom{1}{0}+s\binom{0}{1}
$$

Similarly, $A-d I$ is:

$$
A-d I=\left(\begin{array}{cc}
a-d & b \\
0 & 0
\end{array}\right)
$$

if $a-d \neq 0$ or $b \neq 0$ we have that the rank of the matrix is 1 , so it has a one dimensional nullspace. If $a-d \neq 0$ then it's nullspace is given by:

$$
t\binom{-\frac{b}{a-d}}{1}
$$

Otherwise, it's simply

$$
t\binom{0}{1}
$$

In the even that both are 0 then the rank of the matrix is 0 in which case the null space is two dimensional, so it is:

$$
t\binom{1}{0}+s\binom{0}{1}
$$

