Homework 3 Solutions

3.5.2 Determine is the set of all $\left\{(x, y) \in \mathbb{R}^{2} \mid x \geq 0\right.$ and $\left.y \geq 0\right\}$ is a subspace of \mathbb{R}^{2}

Solution. Not a subspace. $\binom{1}{1} \in S$ but $-\binom{1}{1}=\binom{-1}{-1}$. Therefore S is not closed under scalar multiplication.
3.5.6 Determine if $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \subseteq \mathbb{R}^{3}$ such that $z=2 x$ and $y=0$ form a subspace of \mathbb{R}^{3}.

Solution. S is a subspace.

1. $\mathbf{0}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ so $x=0$ and $z=0$. Since $y=0$ and $z=2 x$, we have $0 \in S$.
2. Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}} \in S$. Then they can be written as

$$
\mathbf{v}_{\mathbf{1}}=\left(\begin{array}{c}
x_{1} \\
0 \\
2 x_{1}
\end{array}\right) \quad \mathbf{v}_{\mathbf{2}}=\left(\begin{array}{c}
x_{2} \\
0 \\
2 x_{2}
\end{array}\right)
$$

So:

$$
\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}=\left(\begin{array}{c}
x_{1}+x_{2} \\
0 \\
2\left(x_{1}+x_{2}\right)
\end{array}\right) \in S
$$

3. Let $\mathbf{v}_{\mathbf{1}} \in S$; so $\mathbf{v}_{\mathbf{1}}=\left(\begin{array}{c}x \\ 0 \\ 2 x\end{array}\right)$. Let c be a scalar. So $c \mathbf{v}_{\mathbf{1}}=\left(\begin{array}{c}c x \\ 0 \\ 2 c x\end{array}\right) \in S$
3.5.40 If A is a 4×2 matrix, explain why the rows of A must be linearly dependent.

Solution. The rows of A are vectors in \mathbb{R}^{2}. If you have more then 2 vectors of \mathbb{R}^{2} then they are linearly dependent.
3.5.58 If A and B have rank n then $A B$ has rank n.

Proof. There are many ways you can prove this. Here is one way:
Let $C=A B$. Let $v \in \mathbb{R}^{n}$ so that $C \mathbf{v}=0$. We want to show that $\mathbf{v}=\mathbf{0}$. Well, $(A B) \mathbf{v}=0$. So, by associativity $A(B \mathbf{v})=$. As A has rank $n, B \mathbf{v}=\mathbf{0}$. As B has rank $n, \mathbf{v}=\mathbf{0}$.
3.5.28 Find a basis for the span of these vectors:

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)\right\}
$$

Solution. We will put them as row vectors in a matrix and row reduce

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 0 \\
0 & 1 & 1 \\
1 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

There are many reductions there. Therefore, a basis is:

$$
S=\{[1,0,0],[0,1,0],[0,0,1]\}
$$

(Remark: these vectors span the entire space \mathbb{R}^{3})
3.5.35 Calculate the rank and the nullity:

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 1
\end{array}\right)
$$

Solution. We first determine a basis of the column space by putting the vectors as the rows of a matrix and doing row reduction:

$$
\left(\begin{array}{cc}
1 & 1 \\
0 & 1 \\
-1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

So we have that a basis for the column space is $\{[1,0],[0,1]\}$ so its dimension is 2 .
By the rank nullity theorem, the null space is dimension 1 . But, if you want to do it out another way, consider the matrix:

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 1
\end{array}\right)
$$

Row reduce it to find solutions to the homogeneous equation it represents.

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right)
$$

Solving, one sees that the solutions are all:

$$
\mathbf{x}=t\binom{1}{-2}
$$

Therefore, the vector $[1,-2]$ spans the null space, so it's dimension is 1
3.5.52 Show that $\left(\begin{array}{l}1 \\ 3 \\ 4\end{array}\right)$ can be written as a linear combination of $\left\{\left(\begin{array}{l}3 \\ 1 \\ 4\end{array}\right),\left(\begin{array}{l}5 \\ 1 \\ 6\end{array}\right)\right\}$ and write the coordinate vector with respect to this basis.
Solution. We will show this by setting up the following augmented matrix:

$$
\left(\begin{array}{ll|l}
3 & 5 & 1 \\
1 & 1 & 3 \\
4 & 6 & 4
\end{array}\right)
$$

Doing row reductions, we get:

$$
\left(\begin{array}{cc|c}
1 & 0 & 7 \\
0 & 1 & -4 \\
0 & 0 & 0
\end{array}\right)
$$

This tells us that

$$
7\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right)-4\left(\begin{array}{l}
5 \\
1 \\
6
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
4
\end{array}\right)
$$

So the coordinate vector with respect to this basis is $\binom{7}{-4}$

