
Homework 2 Solutions
2.3.21 (a) Suppose that w is a linear combination of vectors u1, . . . ,uk and that each ui is a linear com-

bination of vectors v1, . . . ,vm. Prove that w is a linear combination of v1, . . . ,vm.

Proof. Consider ui. We know that ui is a linear combination of v1, . . . ,vm; therefore, we get
constants ci1, . . . , c

i
m such that:

ui = ci1v1 + · · ·+ cimvm

Further, we know that since w is a linear combination of u1, . . . ,uk that there is s1, . . . , sk such
that

w = s1u1 + · · ·+ skuk

Substituting in the linear combination for ui we get that

w = s1
(
c11v1 + · · · c1mvm

)
+ · · ·+ sk

(
ck1v1 + · · · ckmvm

)
Thus:

w =

(
k∑

i=1

sic
i
1

)
v1 + · · ·+

(
k∑

i=1

sic
i
m

)
vm

And so w is a linear combination of of v1, . . . ,vm.

(b) In part (a), suppose in addition that each vj is also a linear combination of u1, . . . ,uk. Prove that
span(u1, . . . ,uk) = span(v1, . . . ,vm).

Proof. We know that each vj is a linear combination of u1, . . . ,uk. Therefore, invoking part (a),
if we start with w a linear combination of u1, . . . ,uk we can get w as a linear combination of
u1, . . . ,uk. Thus span(v1, . . . ,vm) ⊆ span(u1, . . . ,uk). Put in conjunction with part (a), that
span(v1, . . . ,vm) = span(u1, . . . ,uk).
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Thus, e1, e2, e3 is a linear combination of these vectors. By (a), we have that span(e1, e2, e3) is a
subset of the span of these three vectors. As span(e1, e2, e3) is all of R3, we must have that every
vector in R3 can be written as a linear combination of these three.

2.3.24 Determine if this set of vectors is linearly dependent, and if so find a linear dependency.3
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Solution. We set up a matrix with these as the columns:3 2 1

2 1 2
2 3 −6


We now do elementary row operations to row reduce the matrix. (steps omitted). We get this as a
result: 1 0 3

0 1 −4
0 0 0


This has a free variable, and therefore there are infinitely many solutions to the homogeneous equa-
tion. Therefore, there are nontrivial solutions, and the vectors are linearly dependent. To find a
dependency, note that th rref above tells us that:c1
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We can instantiate this at any nonzero value and get a nontrivial dependency; we’ll just plug in 1.
Therefore:
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2.3.42 (a) If the columns of a n × n matrix A are linearly independent as vectors of Rn then what is the

rank of A?

Solution. The rank of A is n.

Proof. The matrix represents a homogeneous system of equations. If the rank was less than n
there would be infinitely many solutions (by the rank theorem), and therefore nontrivial solutions.
This would correspond to a nontrivial linear dependency to the column vectors of the matrix,
which cannot be since the vectors are linearly independent.

(b) If the rows of a n × n matrix are linearly independent as vectors of Rn then what is the rank of
A?

Solution. The rank is n.

Proof. We know that the rank of a matrix is less than the number of rows if and only if the
rows are linearly dependent. This is theorem 2.7 of the book. The proof idea was that you could
emulate the dependency to get a row with all zeros by doing row reduction, but you could just
cite this theorem. This tells us that if the vectors are linearly dependent than the rank must be
exactly the number of rows, which is n.

2.3.47 Suppose that S = {v1, . . . ,vk,v} is a set of vector in Rn such that v is a linear combination of
v1, . . . ,vk. If S′ = {v1, . . . ,vk} then prove that span(S) = span(S′).

Proof. Clearly every element of S′ can be written as an element of S since S′ ⊆ S. Further, every
element of S can be written as a linear combination of S′ since for any u ∈ S, either u = vj for some
j, in which case, u ∈ S′, or u = v, in which case we are assuming that v can be written as a linear
combination of v1, . . . ,vk. Therefore, by exercise 2.3.21b the two spans are equal.
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