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Abstract

J. Beck has shown that if two players alternately select previously
unchosen points from R?, Player 1 can always build a congruent copy of
any given (finite) goal set G, in spite of Player 2’s efforts to stop him [B].
We give a finite goal set G (it has 5 points) which Player 1 cannot construct
before Player 2 in this achievement game played in the plane.

1 Introduction

In the G-achievement game played in the plane, two players take turns choosing
single points from the plane which have not already been chosen. A player
achieves a weak win if he constructs a set congruent to G C R? made up entirely
of his own points, and achieves a strong win if he constructs such a set before
the other player does so. (So a ‘win’ in usual terms corresponds to a strong
win in our terminology.) This is a special case of a positional hypergraph game,
where players take turns choosing unchosen points (vertices of the hypergraph)
in the hopes of occupying a whole edge of the hypergraph with just their own
points. [B96,B] contain results and background in this more general area.

The type of game we are considering here is the game-theoretic cousin of
Euclidean Ramsey Theory (see [G] for a survey). Fixing some r € N and some
finite point set G C R?, the most basic type of question in Euclidean Ramsey
Theory is to determine whether it is true that in every r-coloring of the plane,
there is some monochromatic congruent copy of G.

Restricting ourselves to 2 colors, the game-theoretic analog asks when Player
1 has a ‘win’ in the achievement game with G as a goal set. Though one can
allow transfinite move numbers indexed by ordinals (see Question 5 in Section
3), it is natural to restrict our attention to games of length w, in which moves
are indexed by the natural numbers. In this case, a weak or strong winning
strategy for a player is always a finite strategy (i.e., must always result in weak
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Figure 1: The goal set G. Player 2 can force a draw when the goal is this set,

where 6 is any irrational multiple of 7 less than 3

or strong win, respectively, in a finite, though possibly unbounded, number
of moves) so long as the goal set G is finite. J. Beck has shown [B] that both
players have strategies which guarantee them a weak win in finitely many moves
for any finite goal set—the proof is a potential function argument related to the
classical Erdds-Selfridge theorem [ES]. The question of whether the first player
has a strong win—that is, whether he can construct a copy of G first—seems
in general to be a much harder problem. (A strategy stealing argument shows
that the second player cannot have a strategy which ensures him a strong win:
see Lemma 3.5.)

For some simple goal sets, it is easy to give a finite strong winning strategy
for Player 1. This is the case for any goal set with at most 3 points, for example,
or for the 4-point vertex-set of any parallelogram. We give a set G of 5 points
for which we prove that the first player cannot have a finite strong win in the
G-achievement game (proving, for example, that such finite goal sets do in fact
exist).

Fix 6 = tm, where t is irrational and ¢t < % Our set G is a set of 5 points
gi, 1 < i < 5, all lying on a unit circle C' with center ¢ € R2. For 1 < i < 3,
the angle from g; to g;+1 is #. The point g5 (the ‘middle point’) is the point on
C' lying on the bisector of the angle Zgocgs. (See Figure 1.) For this set G, we
prove the following:

Theorem 1.1. There is no finite strong winning strateqy for Player 1 in the
G-achievement game.

Idea: Let 07 (x) denote the image of x € R? under the rotation nf about the
point ¢. An important property of our choice of G is that once a player has
threatened to build a copy of G by selecting all the points g1, g2, g3, g4, he can
give a new threat by choosing the point 6.(g4) or 6. 1(g1). Furthermore, since
is an irrational multiple of 7, the player can continue to do this indefinitely, tying
up his opponent (who must continuously block the new threats by selecting the
corresponding middle points) while failing himself to construct a copy of G. If
Player 1 is playing for a finite strong win, he cannot let Player 2 indefinitely
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Figure 2: Proving Lemma 2.1

force in this manner. However, to deny Player 2 that possibility, we will see
that Player 1’s only option is the same indefinite forcing, which leaves him no
better. The rest of the rigorous proof is a case study.

2 The Proof

For the proof of Theorem 1.1, we will need the following lemma.

Lemma 2.1. There are no three unit circles Ca,Cs3,Cy so that the pairs C;,C;
each intersect at 2 distinct points x;; and y;;, so that the angles Zx;jc;y;1 are
less than 5 for all j # i # k.

Proof. Let B; denote the unit ball whose boundary is C; for each i, and choose
C; and C; from {C5, C3,C4} so that the area A(B; N B;) is maximal. In Figure
2, for any C}, intersecting the circle C; at points x, y;i lying on C; between 7
and rg, we would have A(B;NBy) > A(B;NBy), a contradiction. The maximum

angle between the points r; and ry on Cj is 2{ O

We are now ready to prove Theorem 1.1.

It is clear that Player 2 can either play indefinitely or reach a point where
it is his move, he has a point h; at least 10 units away from any of Player 1’s
points, and Player 1 has no more than 2 points in any given (closed) ball of
radius 10. (For example: on each turn until he has reached this point, Player 2
moves 30 units away from any of Player 1’s points.) Reaching this point, Player
2 begins to build a copy of G; that is, he arbitrarily designates some ‘center
point’ ¢ at unit distance from the point Ay, and chooses as his move a point ho
which is an angle 6 away from h; on the unit circle C' centered at c¢. In fact, hy
and hs lie on two unit circles which are disjoint except at hi, ho, and so Player
1’s response can lie on only one of them.

Thus without loss of generality, we see that Player 2 can reach a situation
where it is his turn and he has points hy, hy separated by an angle 6 on a unit
circle C' centered at c¢. Moreover, Player 2 ensures that Player 1 controls at



most 3 points of any unblocked copy of G and that any such copy must have
its center point at least 9 units from hy, and that Player 1 has at most 1 point
within 8 units of h;—and, if he does have such a point which is close to hi, then
we have as well that Player 1 has in fact just 2 points of any unblocked copy of
G.

From this point, Player 2 naturally continues his construction choosing the
point hs which lies on the circle C' and is separated from the points ki, he by
angles 26, 0, respectively. We classify the rest of the proof into three different
cases depending on Player 1’s response.

Case 1: A natural response for Player 1 might be to play on the circle C,
thus attempting to prevent Player 2 from building a significant threat. Since
no point is a rotation about the point ¢ by both positive and negative integer
multiples of g, we may assume WLOG that Player 1 does not choose any rota-
tions of h about ¢ by positive integer multiples of g. Thus Player 2 responds
by choosing the point hy on C which is at an angle 6,26, 36 from the points
hs, ha, h1, respectively. Since Player 2 is now threatening to build a copy of G
on his next move and Player 1 is not (he has at most 3 points in any ball of
radius 10 at this point), Player 1 must take the point on C' which together with
h1, ha, hs, hy complete a copy of G. Player 2’s response is naturally to choose
the point hs on C' at angle 6,260,360 from hy, hs, he, and we are in essentially
the same situtation: Player 1 has always at most 3 points in any unblocked
congruent copy of G (since he has only one point ‘near’ C' which is not on C,
and any set congruent to G and not on C interesects C' in at most 2 points),
and Player 2 can force indefinitely.

Case 2: Another response for Player 1 which may be possible is to play
within the vicinity of his previously chosen points such that he controls 4 points
of an unblocked copy G. In this case all of his points are necessarily at least 8
units away from the point hy controlled by Player 2. In this case, Player 2 is
forced to choose the corresponding 5th point of the copy of G which Player 1 is
threatening to build. But now we are in essentially the same situtaion as one
full turn earlier: since Player 1 has at most 3 points in any unblocked copy of
G (and the center point still lies at least 9 units away from h;i) and no points
within 8 units of the point h, we are in the situation described by the starred
(%) paragraph above. Thus Player 1 makes no progress in this case.

Case 3: Finally, we consider the case where Player 1 does ‘none of the
above’; that is, he chooses a point not on the circle C, but which nevertheless
does not increase to 4 the number of points he controls in some congruent copy
of G. Perhaps surprisingly, this is a bit trickier than the previous two cases,
and it is here that we make use of Lemma 2.1.

Player 1 now has as many as two points within 8 units distance of the
point hy. By choosing successively points hg, hs, hg, etc., as in Case 1, Player
2 hopes to successively force Player 1 to take the corresponding fifth point of
each congruent copy of G that Player 2 threatens to build at each step. The
only snag is this: it is conceivable that Player 1, in taking these corresponding
‘fifth’ points, builds his own threat. He already has two points in the vicinity,



Figure 3: The hypergraph Hp, in the case where T is the balanced binary
directed tree of depth 2.

and it is possible that they lie on a congruent copy of G which intersects the
circle C' in two points which Player 1 will eventually be forced to take by Player
2’s moves. In this case, Player 2 would have to respond and could conceivably
end up losing the game if Player 1 is able to break is forcing sequence.

Of course, this is only truly a problem if Player 1 is threatening this in ‘both
directions’—that is, regardless of whether hy is at angles 6,260, 30 to the points
hs, ho, hy, respectively, or to the points h1, ha, hs, respectively. However, such a
double threat is immediately ruled out by Lemma 2.1, since this would require
two sets S1,S52 = G (each a subset of a 3f-arc of a unit circle) intersecting
each other in two points (previously chosen by Player 1) and each also each
interescting C' in two places. This completes the proof. O

3 Further Questions

1. Our (rather crude) methods here are not suited to much larger goal sets,
and certainly not to arbitrarily large goal sets. So we ask: are there arbitrarily
large goal sets G for which Player 1 cannot force a finite strong win in the
G-achievement game played in R??

2. We have examples of 4-point sets for which Player 1 has strong winning
strategies. Are there sets G C R?, |G| = 4 for which Player 1 cannot win?

3. Player 1 can easily be shown to have strong winning strategies for any goal
set of size at most 3, and any 4-point goal set which consists of the vertices of
a parallelogram. It is not difficult to give a 5 point goal set for which Player
1 can be shown to have a strong winning strategy. Are there arbitrarily large
goal sets G for which Player 1 has a strong winning strategy?

4. In the general achievement game played on a hypergraph (in which the two
players select vertices, and the goal sets are the edges) we define some stronger
win types for Player 1:

Definition 3.1. In the achievement game played on a hypergraph H, Player 1
has a fair win if he builds some e € F(H) on a turn which comes before any
turn on which Player 2 builds some f € E(H).
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Figure 4: The hypergraph F3. There are four (in general 2"~!) Type 1 edges,
and three (in general n) Type 2 edges. (The vertex (1,0) is marked with x.)
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Each ‘turn’ of the game consists of a move by Player 1 followed by a move
by Player 2. Definition 3.1 requires simply that Player 1 builds a goal set in
fewer turns than it takes Player 2 to do the same (if Player 2 can at all).

Definition 3.2. In the achievement game played on a hypergraph H, Player 1
has an early win if he builds some e € E(H) (say in n moves) such that there
is no m < n for which Player 2 had |e] — 1 points of a set e € E(H) on his mth
turn, and on which Player 1 had no point on his mth turn.

So every early win is a fair win, and every fair win is a strong win. In
general, none of the win types we have defined are the same, and they all occur
for Player 1 for some hypergraph: Already for K4, Player 1 has a strong win
but not a fair win. On the hypergraph Hp, whose vertices are the vertices of
some balanced binary directed tree 7', and whose edges are the vertex-sets of
longest directed paths in 7' (Figure 3), Player 1 has a fair win and an early win.
Finally, let the hypergraph F,, have vertex set [n] x {0,1}. Edges are of two
types: Type 1 edges are the n-subsets S C [n] x {0, 1} for which the 71 (S) = [n]
and (1,0) € S, and Type 2 edges are all the pairs {(m,0), (m, 1)} where m € [n]
(see Figure 4). Player 1 has a fair win in F,, for n > 2, but not an early win.
Probably, however, the situation is not so rich in the plane:

Conjecture 3.3. There is no finite point set G C R? for which Player 1 has
a strategy which ensures a fair win in the G-achievement game played in the
plane.

The conjecture may seem painfully obvious. If we play the achievement game
in R\ {c} for any point ¢ € R2, for example, Player 2 can prevent a fair win by
always choosing the point which is the central reflection across ¢ of Player 1’s
last move. Annoyingly, even proving that Player 1 cannot have an early win for
any G when playing in R? may be very difficult.

For the sake of completeness, we note the situtation on the hypergraph Hr
is in some way the worst possible for Player 2. It is easy to see that although
Player 2 never occupies all but one vertex of an unblocked edge when playing
on Hr, it is easy for him to occupy all but one vertex of some edge which may
be blocked. The natural strengthening of the ‘early win’ suggested here never
occurs for Player 1:



Definition 3.4. In the achievement game played on a hypergraph H, Player 1
has a humiliating win if he occupies some e € E(H) before Player 2 occupies all
but one vertex of some edge f € E(H).

(So every humiliating win is an early win.) The fact that Player 1 never has a
humiliating win will follow from the strategy stealing argument; we include the
proof for completeness.

Lemma 3.5 (Strategy Stealing). On any hypergraph H, a second player cannot
have a strategy which ensures strong win in the achievement game.

Proof. The proof of Lemma 3.5 is the strategy stealing argument; we include
the proof for completeness. We argue by contradiction: if the second player has
a strong win strategy o (a funtion from game positions to vertices), the first
player makes an arbitrary first move g (his ghost move). Now on each move,
the first player mimicks the second player’s strategy by ignoring his ghost move:
formally, let G,, denote the game’s position on the nth move, and let G, \ x
denote the game position modified so that the vertex = is unchosen. Then on
each turn, the first player chooses the point o(G,, \ ¢) if it is not equal to g (and
thus must be unoccupied, since o is a valid strategy), or, if 0(G,, \ g) = g, the
first player chooses an arbitrary point € V(H) and sets g := z. The fact that
o was a ‘strong win’ strategy for the second player implies that the first player
will occupy all of an edge e € E(H) (even requiring e # g) before the second
player occupies all some some edge f € E(H). In particular, the first player has
a strong win, a contradiction. O

Fact 3.6. On any hypergraph H, Player 2 can prevent Player 1 from achieving
a humiliating win.

Proof. Denote by x the vertex Player 1 chooses on his first move. The hyper-
graph H \ x is the hypergraph with vertices V' \ {z} and edges e\ {z} for each
e € E(H). We see that Player 1 has a humiliating win on H only if he has a
strong win on H \ {z} as a second player, and we are done by Lemma 3.5. O

Lemma 3.5 is deceptive in its simplicity. Keep in mind that the strategy
stealing argument shows only the existence of a strategy for a first player to
prevent a second player strong win. In general, we have no better way to find
such a strategy than the naive ‘backwards labeling’ method, which runs on the
whole game tree. Thus, though Fact 3.6 tells us that Player 2 should never
fall more than one behind Player 1 (in the sense of Definition 3.4), it is quite
possible for this to happen in actual play between good (yet imperfect) players.

5. We restricted our attention here to the first w moves, and indeed, our proof
does not show that Player 1 can’t force a strong win if transfinite move numbers
are allowed. So we ask: are there finite sets G for which Player 1 cannot force
a strong win, when the players make a move for each successor ordinal?
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