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Abstract

We discuss the failure of monotonicity properties for even simple com-
partmental epidemic models, for the case where transmission rates are
non-constant. We also identify a special case in which monotonicity holds.

1 Introduction

Consider a simple SIR (Susceptible, Infected, and Recovered/Removed) model
governed by the differential equations

dI

dt
= IβS · 1

m
− αI (1)

dS

dt
= −IβS · 1

m
(2)

dR

dt
= αI. (3)

(4)

When the transmission coefficient β and the recovery coefficient α are con-
stant (as is the total population m), the final recovered population R(∞) :=
limt→∞R(t) (which is the total number of people ever infected) can be found
to satisfy the transcendental equation

R(∞) = 1− S(0)e−
β
αm (R(∞)−R(0)),

by using the chain rule to write

dS

dR
= − βS

αm
,

separating the variables, and integrating. From this it follows that R(∞) be-
haves monotonically with respect to the basic reproduction number R0 := β

α ;
that is, the larger R0, the larger R(∞).

The purpose of this note is consider monotonicity properties obeyed by the
system in a context where the transmission rate is not a constant but also a
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function of time (because of effects of seasonality, for example, or the effects of
mitigations). We will see that natural-seeming monotonicity properties fail to
hold for even this simplest of epidemic models.

For an SIR model where the transmission rate β : [0,∞] → R is a function
of time, consider the following three monotonicity properties one might hope
would be satisfied for such a system, if β1 and β2 are two transmission rate
functions, and R1(∞) and R2(∞) are the recovered populations resulting from
SIR models with β1 and β2, respectively.

Pointwise monotonicity: If β1(t) ≤ β2(t) for all t, then R1(∞) ≤ R2(∞).

Shift monotonicity: If β1(t) = β2(t) − ε for all t for some constant ε > 0,
then R1(∞) ≤ R2(∞).

Scaling monotonicity: If β1(t) = (1−ε)β2(t) for all t for some constant ε > 0,
then R1(∞) ≤ R2(∞).

In this note we show that all three of these forms of monotonicity can
fail, in general, for SIR models where the transmission rate β(t) is not constant.

On the other hand, we show that pointwise monotonicity does hold, in the
special case that transmission rates never increase:

Theorem 1.1. Consider functions β1, β2 which are both bounded below by some
positive constant. If β1(t) ≤ β2(t) for all t and β1(t) is monotone nonincreasing,
then an SIR model satisfying (1), (2), (3), governed by the transmission rate
function β := β1 ends with a greater number of susceptible individuals than when
governed by β := β2 (assuming identical initial conditions).

We remark that the lack of monotonicity we point out in this note could
be more severe in more complex, realistic epidemic models, where, for exam-
ple, the presence of heterogeneous transmission and mortality rates can lead to
substantial benefits to increasing transmission rates for some populations [1].

2 Failures of monotonicity

In the following sections we present examples to demonstrate the failure of each
type of monotonicity. The examples are generated using code available at the
entry for this manuscript at http://math.cmu.edu/~wes/pub.html.

2.1 Failure of pointwise monotonicity

The failure of pointwise monotonicity for SIR models is well-known; see [2] for
a recent reference discussing examples. A standard example can be constructed
by taking

β1(t) :=

{
1 t < 100

2 t ≥ 100
,
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variable S I R β
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Figure 1: Failure of pointwise monotonicity. The scale for S, I, and R is on the
left, and for β, on the right.

while

β2(t) :=

{
1.5 t < 100

2 t ≥ 100
.

For convenience we scale time so that α = 1, here and for the remaining exam-
ples, giving the correspondence β = R0. The result is shown in Figure 1.

Qualitatively, this particular example is typically explained qualitatively by
noting the fact that β2(t) > β1(t) for t ∈ [0, 100] results in an initial epidemic
in the second scenario, which, while smaller than the epidemic for β = 2 seen
in the first scenario, is nevertheless large enough to achieve enough population
immunity to resist transmission when β2(t) = 2.

However, it is important to note that there is no general principle asserting
that this simple example is the only way in which monotonicity can fail; instead,
this simple examples underlines the fact that pointwise monotonicity is not
guaranteed by even the simplest forces at play in an epidemic’s growth. As we
will see, monotonicity can fail in ways which are more surprising than this first
example might suggest.

3 Failure of shift monotonicity

Perhaps more surprising than the failure of pointwise monotonicity is the fact
that even consistent changes to the transmission function over time can be
counterproductive for reducing epidemic size.
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variable S I R β
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Figure 2: Failure of shift monotonicity. The scale for S, I, and R is on the left,
and for β, on the right.

Consider epidemics governed by the transmission functions

β1(t) :=

{
1.1 t < 100

1.9 t ≥ 100
,

while

β2(t) :=

{
1.4 t < 100

2.2 t ≥ 100
.

Observe that β1(t) = β2(t) − 0.3 for all t. (Recall we have set α = 1.)
Nevertheless, more than 50% more total infections occur in an epidemic governed
by β1 instead of β2, as we see in Figure 2. As we will see next, the same surprising
result can occur from a geometric scaling, rather than an arithmetic shift.

4 Failure of scaling monotonicity

Here we see the same type of example but where the global change in transmis-
sion rates is geometric.

We let

β2(t) :=

{
1.5 t < 100

2.5 t ≥ 100
.

and β1 = .7 · β2. The result is in Figure 3.
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variable S I R β

0.00

0.25

0.50

0.75

1.00

0

1

2

3

0 50 100 150 200
time

re
la

tiv
e 

va
lu

e

β

Final Recovered = 0.576A

0.00

0.25

0.50

0.75

1.00

0

1

2

3

0 50 100 150 200
time

re
la

tiv
e 

va
lu

e

β

Final Recovered = 0.697B

Figure 3: Failure of scale monotonicity. The scale for S, I, and R is on the left,
and for β, on the right.

5 Failure of shift for naturalistic transmission
variation

To produce examples which are as simple as possible, we have focused on step-
functions in the previous sections. This may give the incorrect impression that
failure of monotonicity only occurs in the special case that there will be some
sudden resumption of high transmission rates in the future. In fact it is easy to
construct examples where monotonicity fails even when transmission rates are
changing only slowly over time. In this section, we give an example motivated
by the possibility of seasonal effects on viral transmission, using a shift of a
sine-wave function as the time-varying transmission rate β.

We use

β2(t) :=
sin t/20 + 1

2
+ 1.9

and

β2(t) :=
sin t/20 + 1

2
+ 2.1.

Again, we see that a small consistent decrease in transmission rates in this
scenario can result in more total infections (Figure 4).

6 Monotonicity when β is decreasing

In this section we prove Theorem 1.1. For this purpose, let the functions
Si, Ii, Ri of t for i = 1, 2 be the two SIR models satisfying the systems cor-
responding to (1), (2), (3) for the given βi. Note that for simplicity Theorem
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variable S I R β
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Figure 4: Failure of shift monotonicity for naturalistic variation. The scale for
S, I, and R is on the left, and for β, on the right.

1.1 assumes that the differential equalities hold everywhere, which means that
the βi are necessarily continuous. For simplicity of notation we let m = 1
without loss of generality, so that I, S, and R are all ratios between 0 and 1.

As is standard, we can view these models under derivatives with respect to
S instead of t: Beginning from (1), (2), (3), we can apply to the chain rule to
get

dI

dS
=

α

β · S
− 1. (5)

We write B = 1− S to write

dI

dB
= 1− α

β · (1−B)
. (6)

Considering I and β as a functions of B, and assuming for simplicity that
the number of initially recovered individuals is 0, the choice of initial value
for I is made by choosing some Binit < 1 such that I(Binit) = Binit. (In
the case where the initial number r0 of recovered individuals is nonzero, set
I(Binit) = Binit − r0 > 0.)

Note that we already see from (5) that the SIR model does satisfy pointwise
monotonicity with respect to β as a function of B; the spectacular failure of
monotonicity for SIR models occurs precisely because of the interaction between
β and the correspondence between S and t.

To proceed, we consider the derivative

dt

dB
=

1

I · β · (1−B)
. (7)
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Now we can define f : R3 → R2 by

f(I, t, B) =

(
1− α

β1(t) · (1−B)
,

1

I · β1(t) · (1−B)

)
(8)

so that the SIR model governed by β1 satisfies

d

dB
(I1, t1) = f(I1, t1, B).

Observe that f is Lipshitz in [Binit, Bend] since B is bounded away from 1, and
β(t) and I are bounded away from 0 on this range.

We write fI and ft for the first and second coordinates of f , respectively.
Observe that fI is decreasing with respect to t, and ft is decreasing with respect
to I. In particular,

g(I, t, B) :=

(
− fI(−I, t, B), ft(−I, t, B)

)
is quasimonotone in (I, t); that is, gI is increasing in t and gt is increasing in I.

Moreover, we have that the SIR models governed by β1 and β2, respectively,
satisfy

d

dB
(−I1, t1) = g(−I1, t1, B) (9)

d

dB
(−I2, t2) ≤ g(−I2, t2, B), (10)

where the inequality follows by our assumption that β1(t) ≤ β2(t).
As a result, from the relations (9), (10), together with I1(Binit) ≤ I2(Binit),

t1(Binit) ≥ t2(Binit) and the Lipshitz condition for f (and so g) imply that

I1 ≤ I2
t1 ≥ t2

throughout; see [3], page 112, in particular version (b) of the Comparison The-
orem on the same page.
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