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Abstract

We consider the question of the existence of homomorphisms between G, , and odd
cycles when p = ¢/n, 1 < ¢ < 4. We show that for any positive integer ¢, there exists
e = g(¢) such that if ¢ = 1 + ¢ then w.h.p. G, , has a homomorphism from G, , to
Cop11 so long as its odd-girth is at least 2¢4-1. On the other hand, we show that if ¢ = 4
then w.h.p. there is no homomorphism from G, , to Cs. Note that in our range of
interest, x(Gnp) = 3 w.h.p., implying that there is a homomorphism from G, to Cs.
These results imply the existence of random graphs with circular chromatic numbers y.
satisfying 2 < xc(G) < 2+ 6 for arbitrarily small §, and also that 2.5 < xc(G,, 1) <3
w.h.p.

1 Introduction

The determination of the chromatic number of G, ,, where p = = for constant c, is a central
topic in the theory of random graphs. For 0 < ¢ < 1, such graphs contain, in expectation,
a bounded number of cycles, and are almost-surely 3-colorable. The chromatic number of
such a graph may be 2 or 3 with positive probability, according as to whether or not any
odd cycles appear.

For ¢ > 1, we find that the chromatic number X(Gm%) > 3 with high probability, and letting
¢y = sup. X(Gypc) < k, it is known for all k and ¢ € (¢, cp41) that x(Gpc) € {k, &k + 1},
see Luczak [7] and Achlioptas and Naor [2]; for k£ > 2, the chromatic number may well be
concentrated on the single value k, see Friedgut [5] and Achlioptas and Friedgut [1].
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In this paper, we consider finer notions of colorability for the graphs G, < for ¢ € (1, ¢3),
by considering homomorphisms from G, < to odd cycles Corq1. A homomorphism from a
graph G to Cyyq implies a homomorphism to Coryy for k < €. As the 3-colorability of
a graph G corresponds to the existence of a homomorphism from G to K3, the existence
of a homomorphism to Cy, 7 implies 3-colorability. Thus considering homomorphisms to
odd cycles Csy1 gives a hierarchy of 3-colorable graphs amenable to increasingly stronger
constraint satisfaction problems. Note that a fixed graph having a homomorphism to all
odd-cycles is bipartite.

Our main result is the following;:

Theorem 1. For any ¢ > 1, there is an € > 0 such that with high probability, G
has odd-girth < 20 4+ 1 or has a homomorphism to Coy;.
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Conversely, we expect the following:

Conjecture 1. For any ¢ > 1, there is an (. such that with high probability, there is no
homomorphism from Gy, < to Copr for £ 2 L.

As c3 is known to be at least 4.03, the following confirms Conjecture 1 for a significant
portion of the interval (1,c3).

Theorem 2. For any ¢ > 2.774, there is an (. such that with high probability, there is no
homomorphism from Gn,ﬁ to to Copyq for > (..

We also have that ¢4, = 2:

Theorem 3. With high probability, G, 1 has no homomorphism to Cs.

n

Note that as c3 > 4.03 > 4, we see that there are triangle-free 3-colorable random graphs
without homomorphisms to Cs. Our proof of Theorem 3 involves computer assisted numerical
computations. The same calculations which rigorously demonstrate that ¢4 = 2 suggest
actually that /375 = 2 as well.

Our results can be reformulated in terms of the circular chromatic number of a random graph.
Recall that the circular chromatic number x.(G) of G is the infimum r of circumferences of
circles C' for which there is an assignment of open unit intervals of C' to the vertices of GG such
that adjacent vertices are assigned disjoint intervals. (Note that if circles C' of circumference
r were replaced in this definition with line segments S of length r, then this would give the
ordinary chromatic number y(G).) It is known that x(G) — 1 < x.(G) < x(G), that x.(G)
is always rational, and moreover, that y.(G) < £ if and only if G has a homomorphism to
the circulant graph C, , with vertex set {0,1,...,¢ — 1}, with v ~ u whenever dist(v,u) :=
min{|v —u|,v+ ¢ —u,u+q—v} > ¢q. (See [9].) Since Cot1, is the odd cycle Cypyq our
results can be restated as follows:



Theorem 4. In the following, inequalities for the circular chromatic number hold with high
probability.

1. For any 0 > 0, there is an ¢ > 0 such that, G = G, 1+« has x(G) < 2+ unless it has
odd girth < %.

2. For any ¢ > 2.7T74, there exists v > 2 such that x.(Gn,c) > r.

3. 2.5 < xe(G, 1) < 3.

Note that for any ¢ and £ > 1, there is positive probability that G, < has odd girth < 2(+1,
and a positive probability that it does not. In particular, as the probability that G ¢ has

small odd-girth can be computed precisely, Theorem 1 gives an exact probability in (0,1)
that G, Lte has a homomorphism to Cyy, 1. Indeed, Theorem 1 implies that if ¢ = 1+ ¢ and

€ is sufﬁmently small relative to ¢, then

e—0e(0) _ g=deta(c)
Jim Pr(xc(Gog) € 2+ 7724 7)) = e ) — e, @)
where
-1 c2it1
2 20+ 1)

=1

We close with two more conjectures. The first concerns a sort of pseudo-threshold for having
a homomorphism to Coy:

Conjecture 2. For any {, there is a ¢, > 1 such that G, < has no homomorphism to Cop4q
for ¢ > ¢y, and has either odd-girth < 2¢ + 1 or has a homomorphzsm to Cypyq for c < cy.

The second asserts that the circular chromatic numbers of random graphs should be dense.

Conjecture 3. There are no real numbers 2 < a < b with the property that for any value of
¢, Pr(x.(G,, ) (a,b)) — 0.

Note that our Theorem 1 confirms this conjecture for the case a = 2.

2 Structure of the paper

We prove Theorem 1 in Section 3. We first prove some structural lemmas and then we show,
given the properties in these lemmas, that we can algorithmically find a homomorphism.
We prove Theorem 2 in Section 4 by the use of a simple first moment argument. We
prove Theorem 3 in Section 5. This is again a first moment calculation, but it has required
numerical assistance in its proof.



3 Finding homomorphisms

Lemma 1. If a < 1/10 and c is a positive constant where

{1—604}
c < ¢y = exp o

C

then w.h.p. any two cycles of length less than alogn in G,,, p = =, are at distance more

than alogn.

Proof If there are two cycles contradicting the above claim, then there exists a set S of
size s < 3alogn that contains at least s + 1 edges. The expected number of such sets can
be bounded as follows:

OGO oo

s=4
3alogn 2\ 8
3calogn ce
<o E -

s=4
(062)3a logn log n

n

=o(1).

Our next lemma is concerned with cycles in K, which is the 2-core of G,,,,. The 2-core of
a graph is the graph induced by the edges that are in at least one cycle. When ¢ > 1, the
2-core consists of a linear size sub-graph together with a few vertex disjoint cycles. By few
we mean that in expectation, there are O(1) vertices on these cycles.

Let 0 < x < 1 be such that xe™ = ce™¢. Then w.h.p. K, has
2cn

v (1—ux) (1 — E) n vertices and p ~ (1 — f) 5 edges.
c c

(See for example Pittel [8]).
If ¢ = 1+ ¢ for € small and positive then z = 1 —n where n = £ + a2, |a;| < 2 for £ < 1/10.

The degree sequence of Ky can be generated as follows, see for example Aronson, Frieze and
Pittel [3]: Let A be the solution to

AMe*—1)  2u c—x 24 ase

A—1—-\ v l—z 14ae




We deduce from this that
A < 4|a1|€ < 8e.

We generate the degrees d(1),d(2),...,d(v) as independent copies of the random variable Z
where for d > 2,
)\d
dl(e* —1-=X\)
We condition that the sum Dy = d(1) +d(2) + - + d(n) = 2u. We let

Pr(Z =d) =

Pr(d(i) = dii =1,2,.... k| Dy = 2p)

Pr(d(i) =d;,i=1,2,....k)
_ Pr(dk+1) 4 +dn) =20 —(di + - +di)
N Pr(d(1) + - +d(n) = 2p) ‘

O =

It is shown in [3] that if Z;, Zs, ..., Zx are independent copies of Z then

(o) o

We observe next that the maximum degree in G,,, and hence in K5 is g.s." at most logn.
It follows from this and (2) that

Pr(Zi+ -+ 2y =NE(Z) —t) =

where 02 = ©(1) is the variance of Z.

0, = 14 o(1) for k <log*n and 6, = O(n'/?) in general.

Lemma 2. For any «, 3, there exists ¢o > 1 such that w.h.p. any cycle of length greater
than alogn in the 2-core of Gy, p = -, 1 < ¢ < co, has at most Blogn vertices of degree
> 3.

Proof Suppose that

plt8e (%)6 <1

We will show then that w.h.p. the K5 does not contain a cycle C' where (i) |C| > alogn
and (i) C' contains §|C| vertices of degree greater than two.

We can bound the probability of the existence of a “bad” cycle C' as follows: In the following
display we choose the vertices of our cycle in (Z) ways and then arrange these vertices in
a cycle C'in (k — 1)!/2 ways. Then we choose Sk vertices to have degree at least three.
We then sum over possible degree sequences for the vertices in C. This explains the factor

0n 17 L) We now resort to using the configuration model of Bollobas [4]. This

i=1 d;l(e—1—\
would explain the product Hle %. We use the denominator 2 — k to simplify the

calculation. The configuration model computation will inflate our estimate by a constant

LA sequence of events &, is said to occur quite surely q.s. if Pr(=&,) = O(n=¢) for any constant C' > 0.



factor that we hide with the notation <,. We write A <, B for A = O(B) when O(B) is
“ugly looking”.

Pr(30) <, i (Z)@(ﬁkk)gk d > f[ (di!(e)‘ )fi1 N d;ifi;?)

k=alogn

v

< > i((2M_2k)(I;A—1—A))k’\2k<@kk>9’“d 2 ﬁﬁ

k=alogn

v k
< Z ek‘z/ﬂ 1% )\Qk k ek(e)\ . 1)ﬁk€(l—6)k)\
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R Nk
_ € A Bk _(1—B)kX
= A —1

> o (e)‘— 1) (mc)e’“(e )7

k=alogn

k
v ek k )\ e ﬂ _
< Ok [ kfw. A fC) -
S 2w ( e (5) )

k=alogn

k
z Ok (& h
< & N VC A I P
a k:%;gn 2k (6 4 <5) ) >

= o(1).

Lemma 3. For any o and any k € N, there exists g > 0 such that w.h.p. we can decompose
the edges of the G = G, p, p = %, 0<e<eg, as FUM, where F s a forest, and where
the distance in F' between any two edges in M is at least k.

Proof By choosing 8 < i in Lemma 2 we can find, in every cycle of length > «alogn
of the 2-core Ky of G (which includes all cycles of G), a path of length at least 2k + 1
whose interior vertices are all of degree 2. We can thus choose in each cycle of K5 of length
> alogn such a path of maximum length, and let P denote the set of such paths. (Note
that, in general, there will be fewer paths in P than long cycles in Ky due to duplicates,
but that the elements of P are nevertheless disjoint paths in K5.) We now choose from each
path in P an edge from the center of the path to give a set M;. Note that the set of cycles in
G\ M, is the same as the set of cycles in G'\ Jp.p P. (In particular, the only cycles which
remain have length < alogn and are at distance > k from M.) Thus, letting M, consist of
one edge from each cycle of G\ M;, Lemma 1 implies that M = M; U M, is as desired. O



Proof of Theorem 1. Our goal in this section is to give a Cyyi-coloring of G = G, 1+ for
e > 0 sufficiently small. By this we will mean an assignment ¢ : V(G) — {0,1,...,2(}

such that x ~ y in G implies that c¢(z) ~ c(y) as vertices of Cypy1; that is, that z = y £ 1
(mod 20+ 1).

Consider a decomposition of G as F'U M as given by Lemma 3, with k£ = 4/ — 2.

We begin by 2-coloring F. Let ¢p : V' — {0,1} be such a coloring. Our goal will be to
modify this coloring to give a good Cyy41 coloring of S.

Let B be the set of edges xy € M for which cp(z) = cp(y), and let B be a set of distinct
representatives for B, and for i = 0,1, let B = {v € B | cp(v) = i}.

We now define a new Cyyq coloring ¢: V' — {0,1,...,2¢}, by
() cr(v) if distp(v, B) > 20— 1 3)
c(v) = . .
cr(x) — (=1)(distp(z,v) + 1) if 3z € B’ s.t. dist(x,v)p < 20 — 1.

(Color addition and subtraction are computed modulo 2¢ + 1.)

Since edges in M are separated by distances > 4¢ — 2, this coloring is well-defined (i.e., there
is at most one choice for ). Moreover, ¢ is certainly a good Cyyq-coloring of F. Thus if ¢
is a not a good Cy,1-coloring of S, it is bad along some edge xy € M. But if such an edge
was already properly colored in the 2-coloring cp, it is still properly colored by ¢, since it
has distance > 4¢ — 2 > 2¢ — 1 from other edges in M. On the other hand, if previously we
had cp(z) = cr(y) = i, and WLOG z € B’, then the definition of ¢(v) gives that we now
have that c(x) € {i — 1,7 + 1} (modulo 2¢ — 1). Thus if ¢ is not a good Cy-coloring of S,
then there is an edge xy € M such that x € B* and y’s color also changes in the coloring c;
but by the distance between edges in M, this can only happen if x and y are at F-distance
< 20 — 1. Note also that cp(x) = cp(y) implies that distz(z,y) is even. Thus in this case,
F U {xy} contains an odd cycle of length < 2¢ — 1, and so G has odd girth < 2¢ 4 1, as
desired. O]

4 Avoiding homomorphisms to long odd cycles

For large ¢, one can prove the non-existence of homomorphisms to Cy,y 1 using the following
simple observation:

Observation 4. If G has a homomorphism to Copyq, then G has an induced bipartite sub-

graph with at least %H/(Gﬂ vertices.

Proof. Delete the smallest color class. O



Proof of Theorem 2. The probability that G, < has an induced bipartite subgraph on fn

vertices is at most .
B2n2/4 928 —cf?/4
") o8n (1 - 5) (-2 (4)
Bn n Bo(1 — )1~

The expression inside the parentheses is unimodal in g for fixed ¢, and, for ¢ > 2.774, is less
than 1 for § > .999971. In particular, for ¢ > 2.774, Gmﬁ has no homomorphism to Coyyq
for 20 +1 > 1,427, 583. O

5 Avoiding homomorphisms to Cj

A homomorphism of G = G, p,p = £ into C5 induces a partition of [n] into sets Vi, i =
0,1,...,4. This partition can be assumed to have the following properties:
P1 The sets V;,2 =0,1,...,4 are all independent sets.

P2 There are no edges between V; and V.5 UV, 5. Here addition and subtraction in an
index are taken to be modulo 5.

P3 Every v € V;,i =1,2,3,4 has a neighbor in V;_;.
P4 Every v € V5 has a neighbor in V3.
Hatami [6], Lemma 2.1 shows that we can assume P1,P2,P3. Given P1,P2,P3, if v € V;

has no neighbors in V3 then we can move v from from V5 to V4 and still have a homomorphism.
Furthermore, this move does not upset P1,P2,P3.

We let |V;| =n; for i =0,1,...,4. For a fixed partition we then have

Pr(P1 A P2) = (1 —p)® where S = (Z) — aniﬂ. (5)
Pr(P3 | P1AP2) = ﬁ(l — (I =p)r1)m. (6)
Pr(P4 | P1AP2AP3) < (1 _ (1 - ni)n (1- p)ns)m (1)

Equations (5) and (6) are self evident, but we need to justify (7). Consider the bipartite
subgraph I' of G,,, induced by V5 U V3. P3 tells us that each v € V5 has a neighbor in V5.
Denote this event by A. Suppose now that we choose a random mapping ¢ from V3 to V5.
We then create a bipartite graph I with edge set EyUFEs. Here By = {zy : x € V3,y = ¢(z)}
and Fs is obtained by independently including each of the nons possible edges between V5
and V3 with probability p. We now claim that we can couple I',I” so that I' C I".

8



Event A can be construed as follows: A vertex in v € V3 chooses B, neighbors in V, where
B, is distributed as a binomial Bin(nsg,p), conditioned to be at least one. The neighbors
of v in V5, will then be a random B, subset of V5. We only have to prove then that if v
chooses B! random neighbors in IV then B! stochastically dominates B,. But B is one plus
Bin(ny — 1, p) and domination is easy to confirm. We have ny — 1 instead of ng, since we do
not wish to count the edge v to ¢(v) twice.

We now write n; = a;n for ¢ = 0,...,4. We are particularly interested in the case where
c = 4. Now (4) implies that G, 1 has no induced bipartite subgraph of size 8n for 3 > 0.94.
Thus we may assume that «; > 0.06 for ¢ = 0,...,4. In which case we can write

4 4 "
1
Pr(P1AP2AP3AP4) < o) X exp {—c <§ — ZZ_; O{iai+1) n} X (H(l — e_cai‘l)a") X

i=1
_ —ag/as —caz\aan
(1—e e cas)an,

The number of choices for Vg, ..., V, with these sizes is

n
( . ) = ) x (| <5
Ng, N1, N2, N3, N4 Hi:() O‘z‘ai B

Putting ay =1 — ap — a3 — as — a3 and

1
O{OaOOélal a2a2 a3013 054044

ec(a0a4—%)(€cao . 1)(11 <€ca1 o 1)a2 (ecag o 1)a3(eca3 . 1)a4(1 o e—ag,/azge—cag)ag7

b= b(C, Oy, 01, O, Ckg) =

we see that since there are O(n*) choices for ny, . ..,ns we have
n
Pr(3 a homomorphism from G, 4 to C5) < ™ max  b(4, a0, 1,0, 3) | . (8)
‘n ag+-+a3<0.94

ag,...,a320.06

In the next section, we describe a numerical procedure for verifying that the maximum in
(8) is less than 1. This will complete the proof of Theorem 3.

6 Bounding the function.

Our aim now is to bound the partial derivatives of b(4.0, g, a1, a2, a3), to translate numerical
computations of the function on a grid to a rigorous upper bound.

Before doing this we verify that w.h.p. G, _1 has no independent set S of size s = 3n/5 or
more. Indeed, !

Pr(38) < 27(1 — p)(&) < one=18n/25.12/5 _ 4(1),



In the calculations below we will make use of the following bounds: They assume that
0.06 < a; < 0.6 for 72 > 0.

4oy
log(cy) > —2.82; —1.31 < log(e*® — 1) < 2.31; 46—1 < 4.69
et —
. . 1+ 4062
. 043/052-&-4045 _ _ .
prr— < 3.69; log(e 1) > —0.91; confongion — 1 < 8.40.
We now use these estimates to bound the absolute values of the % . %. Our target value for

these is 30. We will be well within these bounds except for i = 2
Taking logarithms to differentiate with respect to ayp, we find

.

8050 = b(C, Qp, O, Qig, Otg) X

<c <—a0 g+ —t a4> ~ log(a) + log(au) — log(e® — 1)> . (9)

exc — ]

In particular, for ¢ = 4,

1 ob

— . —— > —dag + log(ay) — log(e*™® — 1) > —2.4 — 2.82 — 2.31,

b (9040

L o <4far+—2 4o, )-1lo (ap) — log(e*™ — 1) < 4 x 4.69 +2.82 + 1.31
b Bag = 1t e o glag g : : 3L

Similarly, we find

0b

(90(1 = b(C, g, A1, g, 063) X

(c (—ao+a2 —t 1) —log(an) + log(as) + log (eaoc - 1)) (10)

ealc eagc _ 1

and so for ¢ = 4,

1 0b

 Bar 2 —4ag + log(ay) + log(e** — 1) — log(e*® — 1) > —2.4 — 2.82 — 3.62,
aq

1 ob < (6%) 1 das

5 Ba S 4 g+ o 1)~ og(ay) —log(e*™ — 1) < 2.4 x 4.69 + 2.82 4 1.31.

We next find that

ob
— = b(c, g, 1, 9, aig) X
aa2 ( , X0, Cbp, G2, 3)
as a3/ o
c <—a0 + az + cane _ 1) QY — 1+
log ay — log ap + log(e®® — 1) — log(e**“ — 1) — % cag — log(e®¥/o2teas _ 7). (11)
%)

10



and so for ¢ =4,

1 ab as/as+cas dag 1
T > — dag — 4 ¢ T log(e®3/@2teas _ 1) 4 log(ay) + log (e )

Oy Qg e23/a2tcas elas

We need to be a little careful here. Now az/as < 10 and if ag/ay > 9 then ag > 0.54
and then «o; < 0.46 — 3 x .06 = 0.28 for 7 # 3. We bound -1 % for both possibilities.

b
Continuing we get

1 b
B9 o DS 1121001 — 124 — 2.82 — 3.62 = —20.97,
(6%) b 80@
1 8b
gL 0 o4 g01—114-282— 3.62,
Q9 b Oday
1 0b (0%} €4a1 -1 ag/as+ca
b Dy = (043 T ﬁ) — log(az) + log <64a3 - 1) — log(es/o2tees — 1)

<24 % 3.69 4+ 2.82 4+ 3.62 + 0.91.
Finally, we find that

ob
8?043 = b(c, ap, a1, g, az) X
ecas 1+ cao e*2¢ — 1
c (—ao + o 1) oy P + log(ay) — log(as) + log (eagc — 1) (12)
and so for c =4
1 ab 4o 4o
> Bo > —4dap + log(ay) + log(e™? — 1) — log(e™* — 1) > —2.4 — 2.82 — 3.62,
a3
1 0b etes 1+ 4oy |
b das = 4a4€4a3 1" eos/ozelas — 1 toglas) +log (e4a3 — 1)

< 2.4 %x4.69+ 840+ 2.82 + 3.62.

We see that |% . %| < 30 for all 0 <7 < 3. Thus, if we know that b(c, g, a1, ag, ag) <
B for some B, this means that we can bound b(4, ag, a1, as,a3) < p by checking that
b(4, ap, a1, g, a3) < p — € on a grid with step-size 6 < e/(2- B - 30).

The C++ program in Appendix A checks that b(4, ag, a1, ag,a3) < .949 on a grid with
step-size 0 = .0008 (it completes in around an hour or less on a standard desktop computer,
and is available for download from the authors’ websites). Suppose now that B > 1 is the
supremum of b(4, ap, a1, iz, az) in the region of interest. For ¢ = 600B = 0.048 B, we must
have at some d-grid point that b(4, ag, a1, ag, a3) > B — e = .962B > .962. This contradicts
the computer-assisted bound of < .949 on the grid, completing the proof of Theorem 3. [J
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A C+H+ code to check function bound

#include <iostream>

#include <math.h>

#include <stdlib.h>

using namespace std;

int main(int argc, char*x argv[]){

double delta=.0008; //step size
double maxIndSet=.6; //no independent sets larger than this fraction
double minClass=.06; //all color classes larger than this fraction

double val=0;
double maxval=0;
double maxaO,maxal,maxa2,maxa3; //to record the coordinates of max value
maxaO=maxal=maxa2=maxa3=0;
double A23,A,B,C; //For precomputing parts of the function
double c=4;
for (double a3=minClass; a3 + 4*minClass<l; a3+=delta){
B=exp(c*a3)-1;
for (double a2=minClass; a3 + a2 + 3*minClass<l; a2+=delta){
A23=1/(pow(a2,a2)*pow(a3,ald)) * exp(-c/2)
* pow(exp(c*a2)-1,a3) * pow(l-exp(-a3/a2)*exp(-c*a3),a2);
for (double al=minClass;
a3+al<maxIndSet && a3 + a2 + al + 2*minClass<1;
al+=delta){
A=A23/pow(al,al)* pow(exp(c*al)-1,a2);
for (double alO=max(max(minClass,.4-a2-a3), .4-al-a3);
a2+al<maxIndSet && a3+alO<maxIndSet
& a3 + a2 + al + a0 + minClass<li;
a0+=delta)q{
double a4=1-al0-al-a2-a3;
C=exp(c*al) ;
val=1/pow(a0,a0) * A * pow(BxC/a4,ad)* pow(C-1,al);
if (val>maxval){
maxval=val;
maxa0=a0; maxal=al,; maxa2=a2; maxa3=a3;

cout << "Max is "<<maxval<<", obtained at ("
<<maxal<<","<<maxal<<", "<<maxa2<<",'"<<maxa3<<",6"
<<1-maxaO-maxal-maxa2-maxa3<<")"<<endl;
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program output:

$./bound
Max is 0.948754, obtained at (0.2904,0.2568,0.1704,0.1632,0.1192)
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