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Abstract

We consider the question of the existence of homomorphisms between Gn,p and odd
cycles when p = c/n, 1 < c ≤ 4. We show that for any positive integer `, there exists
ε = ε(`) such that if c = 1 + ε then w.h.p. Gn,p has a homomorphism from Gn,p to
C2`+1 so long as its odd-girth is at least 2`+1. On the other hand, we show that if c = 4
then w.h.p. there is no homomorphism from Gn,p to C5. Note that in our range of
interest, χ(Gn,p) = 3 w.h.p., implying that there is a homomorphism from Gn,p to C3.
These results imply the existence of random graphs with circular chromatic numbers χc
satisfying 2 < χc(G) < 2 + δ for arbitrarily small δ, and also that 2.5 ≤ χc(Gn, 4

n
) < 3

w.h.p.

1 Introduction

The determination of the chromatic number of Gn,p, where p = c
n

for constant c, is a central
topic in the theory of random graphs. For 0 < c < 1, such graphs contain, in expectation,
a bounded number of cycles, and are almost-surely 3-colorable. The chromatic number of
such a graph may be 2 or 3 with positive probability, according as to whether or not any
odd cycles appear.

For c ≥ 1, we find that the chromatic number χ(Gn, c
n
) ≥ 3 with high probability, and letting

ck := supc χ(Gn, c
n
) ≤ k, it is known for all k and c ∈ (ck, ck+1) that χ(Gn, c

n
) ∈ {k, k + 1},

see  Luczak [7] and Achlioptas and Naor [2]; for k > 2, the chromatic number may well be
concentrated on the single value k, see Friedgut [5] and Achlioptas and Friedgut [1].
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In this paper, we consider finer notions of colorability for the graphs Gn, c
n

for c ∈ (1, c3),
by considering homomorphisms from Gn, c

n
to odd cycles C2`+1. A homomorphism from a

graph G to C2`+1 implies a homomorphism to C2k+1 for k < `. As the 3-colorability of
a graph G corresponds to the existence of a homomorphism from G to K3, the existence
of a homomorphism to C2`+1 implies 3-colorability. Thus considering homomorphisms to
odd cycles C2`+1 gives a hierarchy of 3-colorable graphs amenable to increasingly stronger
constraint satisfaction problems. Note that a fixed graph having a homomorphism to all
odd-cycles is bipartite.

Our main result is the following:

Theorem 1. For any ` > 1, there is an ε > 0 such that with high probability, Gn, 1+ε
n

either

has odd-girth < 2`+ 1 or has a homomorphism to C2`+1.

Conversely, we expect the following:

Conjecture 1. For any c > 1, there is an `c such that with high probability, there is no
homomorphism from Gn, c

n
to C2`+1 for ` ≥ `c.

As c3 is known to be at least 4.03, the following confirms Conjecture 1 for a significant
portion of the interval (1, c3).

Theorem 2. For any c > 2.774, there is an `c such that with high probability, there is no
homomorphism from Gn, c

n
to to C2`+1 for ` ≥ `c.

We also have that `4 = 2:

Theorem 3. With high probability, Gn, 4
n
has no homomorphism to C5.

Note that as c3 > 4.03 > 4, we see that there are triangle-free 3-colorable random graphs
without homomorphisms to C5. Our proof of Theorem 3 involves computer assisted numerical
computations. The same calculations which rigorously demonstrate that `4 = 2 suggest
actually that `3.75 = 2 as well.

Our results can be reformulated in terms of the circular chromatic number of a random graph.
Recall that the circular chromatic number χc(G) of G is the infimum r of circumferences of
circles C for which there is an assignment of open unit intervals of C to the vertices of G such
that adjacent vertices are assigned disjoint intervals. (Note that if circles C of circumference
r were replaced in this definition with line segments S of length r, then this would give the
ordinary chromatic number χ(G).) It is known that χ(G)− 1 < χc(G) ≤ χ(G), that χc(G)
is always rational, and moreover, that χc(G) ≤ p

q
if and only if G has a homomorphism to

the circulant graph Cp,q with vertex set {0, 1, . . . , q − 1}, with v ∼ u whenever dist(v, u) :=
min{|v − u| , v + q − u, u + q − v} ≥ q. (See [9].) Since C2`+1,` is the odd cycle C2`+1 our
results can be restated as follows:
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Theorem 4. In the following, inequalities for the circular chromatic number hold with high
probability.

1. For any δ > 0, there is an ε > 0 such that, G = Gn, 1+ε
n

has χc(G) ≤ 2 + δ unless it has

odd girth ≤ 2
δ
.

2. For any c > 2.774, there exists r > 2 such that χc(Gn, c
n
) > r.

3. 2.5 ≤ χc(Gn, 4
n
) < 3.

Note that for any c and ` > 1, there is positive probability that Gn, c
n

has odd girth < 2`+ 1,
and a positive probability that it does not. In particular, as the probability that G

n,
c
n

has

small odd-girth can be computed precisely, Theorem 1 gives an exact probability in (0, 1)
that Gn, 1+ε

n
has a homomorphism to C2`+1. Indeed, Theorem 1 implies that if c = 1 + ε and

ε is sufficiently small relative to `, then

lim
n→∞

Pr(χc(Gn, c
n
) ∈ (2 + 1

`+1
, 2 + 1

`
]) = e−φ`(c) − e−φ`+1(c), (1)

where

φ`(c) =
`−1∑
i=1

c2i+1

2(2i+ 1)
.

We close with two more conjectures. The first concerns a sort of pseudo-threshold for having
a homomorphism to C2`+1:

Conjecture 2. For any `, there is a c` > 1 such that Gn, c
n
has no homomorphism to C2`+1

for c > c`, and has either odd-girth < 2`+ 1 or has a homomorphism to C2`+1 for c < c`.

The second asserts that the circular chromatic numbers of random graphs should be dense.

Conjecture 3. There are no real numbers 2 ≤ a < b with the property that for any value of
c, Pr(χc(Gn,

c
n

) ∈ (a, b))→ 0.

Note that our Theorem 1 confirms this conjecture for the case a = 2.

2 Structure of the paper

We prove Theorem 1 in Section 3. We first prove some structural lemmas and then we show,
given the properties in these lemmas, that we can algorithmically find a homomorphism.
We prove Theorem 2 in Section 4 by the use of a simple first moment argument. We
prove Theorem 3 in Section 5. This is again a first moment calculation, but it has required
numerical assistance in its proof.
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3 Finding homomorphisms

Lemma 1. If α < 1/10 and c is a positive constant where

c < c0 = exp

{
1− 6α

3α

}
then w.h.p. any two cycles of length less than α log n in Gn,p, p = c

n
, are at distance more

than α log n.

Proof If there are two cycles contradicting the above claim, then there exists a set S of
size s ≤ 3α log n that contains at least s + 1 edges. The expected number of such sets can
be bounded as follows:

3α logn∑
s=4

(
n

s

)( (s
2

)
s+ 1

)( c
n

)s+1

≤
3α logn∑
s=4

(ne
s

)s (se
2

)s+1 ( c
n

)s+1

≤ 3cα log n

n

3α logn∑
s=4

(
ce2

2

)s
<

(ce2)3α logn log n

n
= o(1).

2

Our next lemma is concerned with cycles in K2 which is the 2-core of Gn,p. The 2-core of
a graph is the graph induced by the edges that are in at least one cycle. When c > 1, the
2-core consists of a linear size sub-graph together with a few vertex disjoint cycles. By few
we mean that in expectation, there are O(1) vertices on these cycles.

Let 0 < x < 1 be such that xe−x = ce−c. Then w.h.p. K2 has

ν ∼ (1− x)
(

1− x

c

)
n vertices and µ ∼

(
1− x

c

)2 cn
2

edges.

(See for example Pittel [8]).

If c = 1 + ε for ε small and positive then x = 1− η where η = ε+a1ε
2, |a1| ≤ 2 for ε < 1/10.

The degree sequence of K2 can be generated as follows, see for example Aronson, Frieze and
Pittel [3]: Let λ be the solution to

λ(eλ − 1)

eλ − 1− λ
=

2µ

ν
∼ c− x

1− x
=

2 + a1ε

1 + a1ε
.
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We deduce from this that
λ ≤ 4|a1|ε ≤ 8ε.

We generate the degrees d(1), d(2), . . . , d(ν) as independent copies of the random variable Z
where for d ≥ 2,

Pr(Z = d) =
λd

d!(eλ − 1− λ)
.

We condition that the sum D1 = d(1) + d(2) + · · ·+ d(n) = 2µ. We let

θk =
Pr(d(i) = di, i = 1, 2, . . . , k | D1 = 2µ)

Pr(d(i) = di, i = 1, 2, . . . , k)

=
Pr(d(k + 1) + · · ·+ d(n) = 2µ− (d1 + · · ·+ dk)

Pr(d(1) + · · ·+ d(n) = 2µ)
.

It is shown in [3] that if Z1, Z2, . . . , ZN are independent copies of Z then

Pr(Z1 + · · ·+ ZN = N E(Z)− t) =
1

σ
√

2πN

(
1 +O

(
t2 + 1

Nσ2

))
(2)

where σ2 = Θ(1) is the variance of Z.

We observe next that the maximum degree in Gn,p and hence in K2 is q.s.1 at most log n.
It follows from this and (2) that

θk = 1 + o(1) for k ≤ log2 n and θk = O(n1/2) in general.

Lemma 2. For any α, β, there exists c0 > 1 such that w.h.p. any cycle of length greater
than α log n in the 2-core of Gn,p, p = c

n
, 1 < c < c0, has at most β log n vertices of degree

≥ 3.

Proof Suppose that

e1+8ε

(
8εe

β

)β
< 1.

We will show then that w.h.p. the K2 does not contain a cycle C where (i) |C| ≥ α log n
and (ii) C contains β|C| vertices of degree greater than two.

We can bound the probability of the existence of a “bad” cycle C as follows: In the following
display we choose the vertices of our cycle in

(
ν
k

)
ways and then arrange these vertices in

a cycle C in (k − 1)!/2 ways. Then we choose βk vertices to have degree at least three.
We then sum over possible degree sequences for the vertices in C. This explains the factor
θk
∏k

i=1
λdi

di!(eλ−1−λ) . We now resort to using the configuration model of Bollobás [4]. This

would explain the product
∏k

i=1
di(di−1)
2µ−2i+1

. We use the denominator 2µ − k to simplify the
calculation. The configuration model computation will inflate our estimate by a constant

1A sequence of events En is said to occur quite surely q.s. if Pr(¬En) = O(n−C) for any constant C > 0.
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factor that we hide with the notation ≤b. We write A ≤b B for A = O(B) when O(B) is
“ugly looking”.

Pr(∃C) ≤b
ν∑

k=α logn

(
ν

k

)
(k − 1)!

2

(
k

βk

)
θk

∑
d1,...,dβk≥3
dβk+1,...,dk≥2

k∏
i=1

(
λdi

di!(eλ − 1− λ)
· di(di − 1)

2µ− 2k

)

≤
ν∑

k=α logn

1

2k

(
ν

(2µ− 2k)(eλ − 1− λ)

)k
λ2k
(
k

βk

)
θk

∑
d1,...,dβk≥3
dβk+1,...,dk≥2

k∏
i=1

1

(di − 2)!

≤
ν∑

k=α logn

ek
2/µ

2k

(
ν

2µ(eλ − 1− λ)

)k
λ2k
(
k

βk

)
θk(e

λ − 1)βke(1−β)kλ

=
ν∑

k=α logn

ek
2/µ

2k

(
λ

eλ − 1

)k (
k

βk

)
θk(e

λ − 1)βke(1−β)kλ

≤
ν∑

k=α logn

θk
2k

(
ek/µ · λ

(eλ − 1)1−β
·
(
e

β

)β
· e(1−β)λ

)k

≤
ν∑

k=α logn

θk
2k

(
e · λβ ·

(
e

β

)β
· eλ
)k

= o(1).

2

Lemma 3. For any α and any k ∈ N, there exists ε0 > 0 such that w.h.p. we can decompose
the edges of the G = Gn,p, p = 1+ε

n
, 0 < ε < ε0, as F ∪M , where F is a forest, and where

the distance in F between any two edges in M is at least k.

Proof By choosing β < 1
2k

in Lemma 2 we can find, in every cycle of length > α log n
of the 2-core K2 of G (which includes all cycles of G), a path of length at least 2k + 1
whose interior vertices are all of degree 2. We can thus choose in each cycle of K2 of length
> α log n such a path of maximum length, and let P denote the set of such paths. (Note
that, in general, there will be fewer paths in P than long cycles in K2 due to duplicates,
but that the elements of P are nevertheless disjoint paths in K2.) We now choose from each
path in P an edge from the center of the path to give a set M1. Note that the set of cycles in
G \M1 is the same as the set of cycles in G \

⋃
P∈P P . (In particular, the only cycles which

remain have length ≤ α log n and are at distance ≥ k from M .) Thus, letting M2 consist of
one edge from each cycle of G \M1, Lemma 1 implies that M = M1 ∪M2 is as desired. 2
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Proof of Theorem 1. Our goal in this section is to give a C2`+1-coloring of G = Gn, 1+ε
n

for

ε > 0 sufficiently small. By this we will mean an assignment c : V (G) → {0, 1, . . . , 2`}
such that x ∼ y in G implies that c(x) ∼ c(y) as vertices of C2`+1; that is, that x = y ± 1
(mod 2`+ 1).

Consider a decomposition of G as F ∪M as given by Lemma 3, with k = 4`− 2.

We begin by 2-coloring F . Let cF : V → {0, 1} be such a coloring. Our goal will be to
modify this coloring to give a good C2`+1 coloring of S.

Let B be the set of edges xy ∈ M for which cF (x) = cF (y), and let B be a set of distinct
representatives for B, and for i = 0, 1, let Bi = {v ∈ B | cF (v) = i}.

We now define a new C2`+1 coloring c : V → {0, 1, . . . , 2`}, by

c(v) =

{
cF (v) if distF (v,B) ≥ 2`− 1

cF (x)− (−1)j(distF (x, v) + 1) if ∃x ∈ Bj s.t. dist(x, v)F < 2`− 1.
(3)

(Color addition and subtraction are computed modulo 2`+ 1.)

Since edges in M are separated by distances ≥ 4`−2, this coloring is well-defined (i.e., there
is at most one choice for x). Moreover, c is certainly a good C2`+1-coloring of F . Thus if c
is a not a good C2`+1-coloring of S, it is bad along some edge xy ∈ M. But if such an edge
was already properly colored in the 2-coloring cF , it is still properly colored by c, since it
has distance ≥ 4`− 2 ≥ 2`− 1 from other edges in M . On the other hand, if previously we
had cF (x) = cF (y) = i, and WLOG x ∈ Bi, then the definition of c(v) gives that we now
have that c(x) ∈ {i− 1, i+ 1} (modulo 2`− 1). Thus if c is not a good C2`+1-coloring of S,
then there is an edge xy ∈M such that x ∈ Bi and y’s color also changes in the coloring c;
but by the distance between edges in M , this can only happen if x and y are at F -distance
< 2` − 1. Note also that cF (x) = cF (y) implies that distF (x, y) is even. Thus in this case,
F ∪ {xy} contains an odd cycle of length ≤ 2` − 1, and so G has odd girth < 2` + 1, as
desired.

4 Avoiding homomorphisms to long odd cycles

For large `, one can prove the non-existence of homomorphisms to C2`+1 using the following
simple observation:

Observation 4. If G has a homomorphism to C2`+1, then G has an induced bipartite sub-
graph with at least 2`

2`+1
|V (G)| vertices.

Proof. Delete the smallest color class.
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Proof of Theorem 2. The probability that Gn, c
n

has an induced bipartite subgraph on βn
vertices is at most (

n

βn

)
2βn
(

1− c

n

)β2n2/4

<

(
2βe−cβ

2/4

ββ(1− β)1−β

)n

(4)

The expression inside the parentheses is unimodal in β for fixed c, and, for c > 2.774, is less
than 1 for β > .999971. In particular, for c > 2.774, Gn, c

n
has no homomorphism to C2`+1

for 2`+ 1 ≥ 1, 427, 583.

5 Avoiding homomorphisms to C5

A homomorphism of G = Gn,p, p = c
n

into C5 induces a partition of [n] into sets Vi, i =
0, 1, . . . , 4. This partition can be assumed to have the following properties:

P1 The sets Vi, i = 0, 1, . . . , 4 are all independent sets.

P2 There are no edges between Vi and Vi+2 ∪ Vi−2. Here addition and subtraction in an
index are taken to be modulo 5.

P3 Every v ∈ Vi, i = 1, 2, 3, 4 has a neighbor in Vi−1.

P4 Every v ∈ V2 has a neighbor in V3.

Hatami [6], Lemma 2.1 shows that we can assume P1,P2,P3. Given P1,P2,P3, if v ∈ V2
has no neighbors in V3 then we can move v from from V2 to V0 and still have a homomorphism.
Furthermore, this move does not upset P1,P2,P3.

We let |Vi| = ni for i = 0, 1, . . . , 4. For a fixed partition we then have

Pr(P1 ∧P2) = (1− p)S where S =

(
n

2

)
−

4∑
i=0

nini+1. (5)

Pr(P3 | P1 ∧P2) =
4∏
i=1

(1− (1− p)ni−1)ni . (6)

Pr(P4 | P1 ∧P2 ∧P3) ≤
(

1−
(

1− 1

n2

)n3

(1− p)n3

)n2

(7)

Equations (5) and (6) are self evident, but we need to justify (7). Consider the bipartite
subgraph Γ of Gn,p induced by V2 ∪ V3. P3 tells us that each v ∈ V3 has a neighbor in V2.
Denote this event by A. Suppose now that we choose a random mapping φ from V3 to V2.
We then create a bipartite graph Γ′ with edge set E1∪E2. Here E1 = {xy : x ∈ V3, y = φ(x)}
and E2 is obtained by independently including each of the n2n3 possible edges between V2
and V3 with probability p. We now claim that we can couple Γ,Γ′ so that Γ ⊆ Γ′.
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Event A can be construed as follows: A vertex in v ∈ V3 chooses Bv neighbors in V2 where
Bv is distributed as a binomial Bin(n2, p), conditioned to be at least one. The neighbors
of v in V2 will then be a random Bv subset of V2. We only have to prove then that if v
chooses B′v random neighbors in Γ′ then B′v stochastically dominates Bv. But B′v is one plus
Bin(n2− 1, p) and domination is easy to confirm. We have n2− 1 instead of n2, since we do
not wish to count the edge v to φ(v) twice.

We now write ni = αin for i = 0, . . . , 4. We are particularly interested in the case where
c = 4. Now (4) implies that Gn, 4

n
has no induced bipartite subgraph of size βn for β > 0.94.

Thus we may assume that αi ≥ 0.06 for i = 0, . . . , 4. In which case we can write

Pr(P1 ∧P2 ∧P3 ∧P4) ≤ eo(n)×exp

{
−c

(
1

2
−

4∑
i=0

αiαi+1

)
n

}
×

(
4∏
i=1

(1− e−cαi−1)αi

)n

×

(1− e−α3/α2e−cα3)α2n.

The number of choices for V0, . . . , V4 with these sizes is(
n

n0, n1, n2, n3, n4

)
= eo(n) ×

(
1∏4

i=0 α
αi
i

)n

≤ 5n.

Putting α4 = 1− α0 − α1 − α2 − α3 and

b = b(c, α0, α1, α2, α3) =
1

α0
α0α1

α1α2
α2α3

α3α4
α4

ec(α0α4− 1
2
)(ecα0 − 1)α1(ecα1 − 1)α2(ecα2 − 1)α3(ecα3 − 1)α4(1− e−α3/α2e−cα3)α2 ,

we see that since there are O(n4) choices for n0, . . . , n4 we have

Pr(∃ a homomorphism from Gn, 4
n

to C5) ≤ eo(n)

 max
α0+···+α3≤0.94
α0,...,α3≥0.06

b(4, α0, α1, α2, α3)

n

. (8)

In the next section, we describe a numerical procedure for verifying that the maximum in
(8) is less than 1. This will complete the proof of Theorem 3.

6 Bounding the function.

Our aim now is to bound the partial derivatives of b(4.0, α0, α1, α2, α3), to translate numerical
computations of the function on a grid to a rigorous upper bound.

Before doing this we verify that w.h.p. Gn,p= 4
n

has no independent set S of size s = 3n/5 or
more. Indeed,

Pr(∃S) ≤ 2n(1− p)(
s
2) ≤ 2ne−18n/25e12/5 = o(1).
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In the calculations below we will make use of the following bounds: They assume that
0.06 ≤ αi ≤ 0.6 for i ≥ 0.

log(αi) > −2.82; −1.31 < log(e4αi − 1) < 2.31;
e4αi

e4αi − 1
< 4.69

1

e4αi − 1
< 3.69; log(eα3/α2+4α3 − 1) > −0.91;

1 + 4α2

eα3/α2e4α3 − 1
< 8.40.

We now use these estimates to bound the absolute values of the 1
b
· ∂b
∂αi

. Our target value for
these is 30. We will be well within these bounds except for i = 2

Taking logarithms to differentiate with respect to α0, we find

∂b

∂α0

= b(c, α0, α1, α2, α3)×(
c

(
−α0 + α1 +

α1

eα0c − 1
+ α4

)
− log(α0) + log(α4)− log(eα3c − 1)

)
. (9)

In particular, for c = 4,

1

b
· ∂b
∂α0

≥ −4α0 + log(α4)− log(e4α3 − 1) > −2.4− 2.82− 2.31,

1

b
· ∂b
∂α0

≤ 4

(
α1 +

α1

eα0c − 1
+ α4

)
− log(α0)− log(e4α3 − 1) < 4× 4.69 + 2.82 + 1.31.

Similarly, we find

∂b

∂α1

= b(c, α0, α1, α2, α3)×(
c

(
−α0 + α2 +

α2

eα1c − 1

)
− log(α1) + log(α4) + log

(
eα0c − 1

eα3c − 1

))
, (10)

and so for c = 4,

1

b
· ∂b
∂α1

≥ −4α0 + log(α4) + log(e4α0 − 1)− log(e4α3 − 1) > −2.4− 2.82− 3.62,

1

b
· ∂b
∂α1

≤ 4

(
α2 +

α2

e4α1 − 1

)
− log(α1)− log(e4α3 − 1) < 2.4× 4.69 + 2.82 + 1.31.

We next find that

∂b

∂α2

= b(c, α0, α1, α2, α3)×

c

(
−α0 + α3 +

α3

eα2c − 1

)
− α3/α2

eα3/α2+cα3 − 1
+

logα4 − logα2 + log(eα1c − 1)− log(eα3c − 1)− α3

α2

− cα3 − log(eα3/α2+cα3 − 1); (11)
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and so for c = 4,

1

b
· ∂b
∂α2

≥− 4α0 −
α3

α2

eα3/α2+cα3

eα3/α2+cα3 − 1
− log(eα3/α2+cα3 − 1) + log(α4) + log

(
e4α1 − 1

e4α3 − 1

)
We need to be a little careful here. Now α3/α2 ≤ 10 and if α3/α2 ≥ 9 then α3 ≥ 0.54

and then αi ≤ 0.46 − 3 × .06 = 0.28 for i 6= 3. We bound −1
b
· ∂b
∂αi

for both possibilities.

Continuing we get
α3

α2

≥ 9 :
1

b
· ∂b
∂α2

> −1.12− 10.01− 12.4− 2.82− 3.62 = −29.97,

α3

α2

≤ 9 :
1

b
· ∂b
∂α2

> −2.4− 9.01− 11.4− 2.82− 3.62,

1

b
· ∂b
∂α2

≤4

(
α3 +

α3

e4α2 − 1

)
− log(α2) + log

(
e4α1 − 1

e4α3 − 1

)
− log(eα3/α2+cα3 − 1)

<2.4× 3.69 + 2.82 + 3.62 + 0.91.

Finally, we find that

∂b

∂α3

= b(c, α0, α1, α2, α3)×

c

(
−α0 + α4

ecα3

ecα3 − 1

)
+

1 + cα2

eα3/α2ecα3 − 1
+ log(α4)− log(α3) + log

(
eα2c − 1

eα3c − 1

)
(12)

and so for c = 4

1

b
· ∂b
∂α3

≥ −4α0 + log(α4) + log(e4α2 − 1)− log(e4α3 − 1) > −2.4− 2.82− 3.62,

1

b
· ∂b
∂α3

≤ 4α4
e4α3

e4α3 − 1
+

1 + 4α2

eα3/α2e4α3 − 1
− log(α3) + log

(
e4α2 − 1

e4α3 − 1

)
< 2.4× 4.69 + 8.40 + 2.82 + 3.62.

We see that |1
b
· ∂b
∂αi
| < 30 for all 0 ≤ i ≤ 3. Thus, if we know that b(c, α0, α1, α2, α3) ≤

B for some B, this means that we can bound b(4, α0, α1, α2, α3) < ρ by checking that
b(4, α0, α1, α2, α3) < ρ− ε on a grid with step-size δ ≤ ε/(2 ·B · 30).

The C++ program in Appendix A checks that b(4, α0, α1, α2, α3) < .949 on a grid with
step-size δ = .0008 (it completes in around an hour or less on a standard desktop computer,
and is available for download from the authors’ websites). Suppose now that B ≥ 1 is the
supremum of b(4, α0, α1, α2, α3) in the region of interest. For ε = 60δB = 0.048B, we must
have at some δ-grid point that b(4, α0, α1, α2, α3) ≥ B − ε = .962B ≥ .962. This contradicts
the computer-assisted bound of < .949 on the grid, completing the proof of Theorem 3.
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A C++ code to check function bound

#include <iostream>

#include <math.h>

#include <stdlib.h>

using namespace std;

int main(int argc, char* argv[]){

double delta=.0008; //step size

double maxIndSet=.6; //no independent sets larger than this fraction

double minClass=.06; //all color classes larger than this fraction

double val=0;

double maxval=0;

double maxa0,maxa1,maxa2,maxa3; //to record the coordinates of max value

maxa0=maxa1=maxa2=maxa3=0;

double A23,A,B,C; //For precomputing parts of the function

double c=4;

for (double a3=minClass; a3 + 4*minClass<1; a3+=delta){

B=exp(c*a3)-1;

for (double a2=minClass; a3 + a2 + 3*minClass<1; a2+=delta){

A23=1/(pow(a2,a2)*pow(a3,a3)) * exp(-c/2)

* pow(exp(c*a2)-1,a3) * pow(1-exp(-a3/a2)*exp(-c*a3),a2);

for (double a1=minClass;

a3+a1<maxIndSet && a3 + a2 + a1 + 2*minClass<1;

a1+=delta){

A=A23/pow(a1,a1)* pow(exp(c*a1)-1,a2);

for (double a0=max(max(minClass,.4-a2-a3),.4-a1-a3);

a2+a0<maxIndSet && a3+a0<maxIndSet

&& a3 + a2 + a1 + a0 + minClass<1;

a0+=delta){

double a4=1-a0-a1-a2-a3;

C=exp(c*a0);

val=1/pow(a0,a0) * A * pow(B*C/a4,a4)* pow(C-1,a1);

if (val>maxval){

maxval=val;

maxa0=a0; maxa1=a1; maxa2=a2; maxa3=a3;

}

}

}

}

}

cout << "Max is "<<maxval<<", obtained at ("

<<maxa0<<","<<maxa1<<","<<maxa2<<","<<maxa3<<","

<<1-maxa0-maxa1-maxa2-maxa3<<")"<<endl;

}
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program output:

$./bound

Max is 0.948754, obtained at (0.2904,0.2568,0.1704,0.1632,0.1192)
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