21-484 Graph TheoryAssignment # 3Due: Friday, February 7

- 1. The complete bipartite graph $K_{n,m}$ has vertex set $A \dot{\cup} B$ where |A| = n and |B| = mand edge set consisting of all pairs with one vertex in A and one vertex in B. Use the Matrix Tree Theorem to determine the number of spanning trees of $K_{n,m}$.
- 2. Let G = (V, E) be a graph and $M \subseteq E$ be a matching. We begin with two definitions.
 - A path x_0, x_1, \ldots, x_k is an **augmenting path** if
 - $-x_{i-1}x_i \notin M$ for all odd $i \in \{1, \ldots, k\},\$
 - $-x_{i-1}x_i \in M$ for all even $i \in \{1, \ldots, k\}$, and
 - Neither x_0 nor x_k is incident with any edge in M.
 - The matching M is a **maximum matching** if there is no matching M' such that |M'| > |M|.

Prove that M is a maximum matching if and only if there no augmenting path.

3. Show that a graph G = (V, E) has a matching of size k if and only if

$$q(G-S) \le |S| + |V| - 2k$$
 for all $S \subseteq V$.

4. Deduce the Marriage Theorem from Tutte's 1-factor Theorem.

For the remaining questions make use of the following definitions. If G is a graph on more than one vertex and G - F is connected for every set F of fewer than ℓ edges then we say that G is ℓ -edge-conected. The greatest integer ℓ such that G is ℓ -edge-connected is the edge connectivity of G, which is denoted $\lambda(G)$.

5. Let G be an n vertex graph such that

 $d(x) + d(y) \ge n - 1 \quad \text{ for all non-adjacent } x, y \in V(G).$

Prove that $\lambda(G) = \delta(G)$.

6. Suppose G = (V, E) is k-edge-connected and the deletion of any edge of G gives a graph that is not k-edge-connected. Show that G has minimum degree k.

Hint: Consider $X \subseteq V$ with $|E(X, V \setminus X)| = k$ and |X| minimum.