21-484 Graph TheoryAssignment # 2Due: Friday, January 31

- 1. Show that every automorphism of a tree fixes a vertex or fixes an edge.
- 2. Use the Matrix Tree Theorem to show that the number of spanning trees on a set of n labelled vertices is n^{n-2} . Hint. Start by considering the eigenvalues of A_{K_n} .
- 3. The complete bipartite graph $K_{n,m}$ has vertex set $A \dot{\cup} B$ where |A| = n and |B| = m and edge set consisting of all pairs with one vertex in A and one vertex in B. Use the Matrix Tree Theorem to determine the number of spanning trees of $K_{n,m}$.
- 4. Give an example of 3-regular graph that does not have a 1-factor. (A 3-regular graph is called a cubic graph. A 1-factor is a collection of edges with the property that each vetex is in exactly one of the edges in the collection.)
- 5. Let G = (V, E) be a bipartite graph with bipartition $V = A \dot{\cup} B$. Show that there is a matching M in G that saturates every vertex $v \in A$ such that $d(v) = \Delta(G)$. (We say that matching M saturates a vertex v if v is contained in the union of the edges in M.)
- 6. Let X be a set with |X| = n. Suppose $\mathcal{F} \subset 2^X$ is a collection of sets with the property

$$A, B \in \mathcal{F}$$
 implies $A \not\subset B$.

Prove

$$|\mathcal{F}| \le \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}.$$

Hint: Define a chain to be a collection of sets A_1, \ldots, A_k such that $A_1 \subset A_2 \subset \cdots \subset A_k$. Prove that there is decomposition of the collection of all subsets of X into $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ chains.