21-484 Graph Theory Review sheet for test 2

Definitions. The test will assume that you know the following definitions.

- Independent collection of paths
- Vertex set that separates $A, B \subset V(G)$
- If D = (V, A) is a directed graph then the **out-neighborhood** and **in-neighborhood**, respectively, are

$$N^+(v) = \{y \in V : (v, y) \in A\}$$
 and $N^-(v) = \{y \in V : (y, v) \in A\}.$

• If D = (V, A) is a directed graph and $f: V \to \mathbb{R}$ is a function then we define

$$f^+(v) = \sum_{y \in N^+(v)} f(v, y)$$
 and $f^-(v) = \sum_{y \in N^-(v)} f(y, v).$

• If D = (V, A) is a directed graph and $X, Y \subseteq V$ then

$$A(X,Y) = \{(x,y) \in A : x \in X \text{ and } y \in Y\}$$

Furthemore, if $g: A \to \mathbb{R}$ then

$$g(X,Y) = \sum_{(x,y)\in A(X,Y)} g(x,y).$$

- Integral flow.
- Line graph.
- Proper vertex coloring, k-coloring, $\chi(G)$.
- Idependence number, clique number.
- Minimum degree, maximum degree, $\delta(G), \Delta(G)$.
- Proper edge coloring, k-edge-coloring, $\chi'(G)$.

Theorems. The test assumes knowledge of the following theorems

Menger's Theorem. Let G = (V, E) be a graph and let A, B ⊂ V. A set S of vertices seperates A and B if every path from A to B traverses a vertex in S. (N.b. If A ∩ B ≠ Ø then A ∩ B is a subset of any seperating set.)

Theorem. qThe minimum number of vertices in a set separating A and B is the maximum number of disjoint path from A to B.

- Menger's Theorem, global version. Let G = (V, E) be a graph.
 - (i) G is k-connected if and only for every pair of distinct vertices in G is joined by a collection of k independent paths.
 - (ii) G is k-edge-connected if and only if every pair of distinct vertices in G is joined by a collection of k edge-disjoint paths.
- Max-flow/Min-cut, Directed, arc-weight version. Let D = (V, A) be a directed graph and let $c : A \to \mathbb{N}$ specify capacities for each arc. Furthermore, let a source $s \in V$ and a sink $t \in V$ be specified. A function $f : A \to \mathbb{R}^+$ is a flow if
 - $-f^+(v) = f^-(v) \text{ for all } v \in V \setminus \{s, t\}.$
 - $-f(x,y) \le c(x,y)$ for all $(x,y) \in A$.

The value of a flow is $v(f) = f^+(s) - f^-(s) = f^-(t) - f^+(t)$. A set $S \subset V$ is a cut if $s \in S$ and $t \notin S$. The capacity of the cut S is $c(S, V \setminus S)$.

Theorem. The maximum value of a flow from s to t equals the minimum capacity of a cut that separates s from t.

• Max-flow/Min-cut, Directed, vertex weight version. Let D = (V, A) be a digraph with a specified source $s \in V$ and sink $t \in V$ and a function $c : V \setminus \{s,t\} \to \mathbb{N}$ that specifies vertex capacities. A flow is now a map $f : A \to \mathbb{R}^+$ such that

$$f^+(v) = f^-(v) \le c(v)$$
 for all $v \in V \setminus \{s, t\}$.

The value of a flow is again $v(f) = f^+(s) - f^-(s) = f^-(t) - f^+(t)$. A cut is now a set $X \subseteq V \setminus \{s, t\}$ such that there is no flow of positive value from s to t in G - X. The capacity of a cut X is

$$c(X) = \sum_{x \in X} c(x).$$

Theorem. The maximum value of a flow from s to t is equal to the maximum capacity of a cut X.

- Fact. In the context of Max-flow/Min-cut, there is a maximum value flow that is an integral flow.
- Claim. If G and H are graphs and $G \cap H$ is complete then $\chi(G \cup H) = \max{\chi(G), \chi(H)}$.

• Claim. Every graph G has an induced subgraph H such that

$$\delta(H) \ge \chi(G) - 1.$$

• Brook's Theorem. Let G = (V, E) be a connected graph. If G is neither an odd cycle nor complete then

$$\chi(G) \le \Delta(G).$$

- Theorem. If G = (V, E) is a bipartite graph then $\chi'(G) = \Delta(G)$.
- Vizing's Theorem. If G = (V, E) is a graph then

$$\chi'(G) \le \Delta(G) + 1.$$

Review Problems. Doing these problems should help in preparation for the third test.

1. A circulation in a directed graph D = (V, A) is a flow without a source and sink. Suppose that we specify a lower capacity $\ell(x, y)$ and an upper capacity u(x, y) for each arc $(x, y) \in A$ such that $0 \leq \ell(x, y) \leq u(x, y)$. We say that a circulation f is feasible if

 $\ell(x,y) \le f(x,y) \le u(x,y) \quad \forall (x,y) \in A.$

Prove that there is feasible circulation if and only if

$$\ell(S, V \setminus S) \le u(V \setminus S, S) \quad \forall A \subset V.$$

2. Let D = (V, A) be a digraph with source $s \in V$ and sink $t \in V$ and arc capacities $C : A \to \mathbb{N}$. If f is a flow on D then we say that a directed cycle v_1, v_2, \ldots, v_k carries positive flow if

$$f(v_1, v_2), f(v_2, v_3), \dots, f(v_{k-1}, v_k), f(v_k, v_1) > 0.$$

Prove that there is a flow of maximum value such that no directed cycle in D carries positive flow and $f^{-}(s) = f^{+}(t) = 0$.

- 3. Let G be a k-connected graph. Prove that any k vertices in G are contained in a common cycle.
- 4. Show that if G = (V, E) is a 5-connected graph and u, v, w are distinct vertices in G then there is a collection of six cycles in G such that all cycles in the collection contain u and v but no cycle in the collection contains w.
- 5. Let $[n] = \{1, 2, ..., n\}$. For $2k \leq n$ define the graph K = K(n, k) to be the graph whose vertex set $\binom{[n]}{k}$ with an edge between vertices A and B if A and B are disjoint.
 - (a) Given an explicit vertex coloring of K(n, k) that uses at most n colors.
 - (b) Let $X = \{n 2k + 1, n 2k + 2, ..., n\}$ and consider the induced graph $H = K[\binom{X}{k}]$. Determine the chromatic number of this graph.
 - (c) Using the previous part show that the chromatic number of K(n,k) is at most n 2k + 2.
- 6. Let G = (V, E) be a connected graph. We define the distance between two vertices $x, y \in V$ to be the number of edges in the shortest path from x to y. Let v be a vertex and for r = 0, 1, 2, ... let V_r be the set of vertices of distance exactly r from v. Show that

$$\chi(G) \le \max\{\chi(G_r) + \chi(G_{r+1}) : r \ge 0\}.$$

7. A graph G with $\chi(G) = k$ is critically k-chromatic if $\chi(G - v) < k$ for all $v \in V(G)$. Note that every k-chromatic graph G has an induced graph H that is critically k-chromatic and shiw that the minimum degree of such a subgraph is k - 1.

- (a) Determine the critically 3-chromatic graphs.
- (b) Show that every critically k-chromatic graph is (k-1)-edge-connected.
- 8. Prove that every graph G with $\chi(G) \ge 3$ contains a cycle of length at least $\chi(G)$.
- 9. Use Hall's Theorem to prove that if G is bipartite then $\chi'(G) = \Delta(G)$.
- 10. Let H be a 2k-regular graph such that |V(H)| = 4k + 1. Let M be a matching in H such that |M| = k 1 and set

$$G = H - M.$$

Prove $\chi'(G) = 2k + 1$.