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Abstract. We discuss control systems defined on an infinite horizon, where 
typically all the associated costs become unbounded as the time grows 
indefinitely. It is proved, under certain lower semicontinuity and controllabil- 
ity assumptions, that a linear time function can be subtracted from the cost, 
resulting in a modified cost, which is bounded on the infinite time interval. 
The cost evaluated over one sampling interval has a simple representation in 
terms of the initial and final states. Applying this representation we obtain an 
optimality result for control systems represented by ordinary differential 
equations whose cost integrand contains a discounting factor. 

1. Introduction 

In this work we analyze time invariant and periodic control systems, which 
operate on an infinite time horizon. Typically, such systems have optimal cost 
functionals which are unbounded as time tends to infinity. Three examples are 
displayed in the next section. It is not clear apriori how optimality should be 
defined when the cost tends to infinity. Several attempts were made in this 
direction; for instance, Gale [3] and von Weizsacker [6] developed the notion of 
overtaking, which was adopted by many authors. 

The contribution of this work is in a level prior to the discussion of 
optimality. It is shown, under a controllability type condition, that a linear 
expression can be subtracted from the cost functional in a way that practically 
reduces the discussion to controls with bounded costs. The above-mentioned 
controllability condition is of the following nature: The set of admissible states of 
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the system is a compact set, every member of which can be steered to any other 
one within a fixed finite time interval. 

We develop a representation formula for the optimal cost which consists of 
splitting of the cost into three summands: a constant, a nonnegative term and a 
summand which depends only on the end-points of the trajectory and not on the 
trajectory itself. We shall demonstrate how such a representation is naturally 
suggested whenever the cost is convex. 

The reduction to finite cost and the representation formula help in the 
analysis of the various optimality concepts. Some applications are discussed in the 
paper. In particular, we establish the existence of overtaking optimal solutions for 
control systems whose cost contains a discounting factor. 

The paper is organized as follows. The framework is displayed in section 2, 
along with three examples which motivate the abstract setting. In section 3 the 
reduction to finite cost is stated and proved while some comments appear in 
section 4. The representation formula is developed in section 5. Two applications 
of the abstract theory are given in sections 6 and 7. One is concerned with the 
existence of an optimal overtaking solution where discounting factors are intro- 
duced into the cost-expressions. The other extends some early work of Bellman 
and Bucy [1] on continuous asymptotic control theory. In the final section we 
comment about an essential hypothesis of the model, namely the compactness 
assumption for the states; we show that in some cases the compactness can be 
derived from the structure of the problem. 

2. Motivation and Setting 

We first set forth the framework under which most of our results are developed. 
We find it convenient to work with discrete time models. This way we analyze the 
trajectories, which are in this context sequences in R n, and which we call 
programs, rather than refer to the control action. The continuous case can be 
reduced to our framework as we demonstrate in the three examples which are 
displayed later on and which motivate our work. 

The abstract model we analyze is summarized as follows: 

Assumption L Let K be a compact set in the Euclidean n-dimensional space R", 
and let v : K × K ~ R 1 be bounded and lower semicontinuous (i.e. v(lim(x k, Yk)) 
~< liminf v(xk, y~)). 

The interpretation of the model is as follows. A control system is operating 
on an infinite time interval [0, oo). We choose a sampling time interval, say [0, T]. 
For  any action that steers the state x ~ K at time t = 0 to state y ~ K at time 
t = T there is a cost associated. The value v(x, y) appearing in Assumption I is 
the minimal cost possible. Any choice of control generates a trajectory, say x(t), 
and we shall refer to z k = x(kT) as the program. If the control action is chosen in 
an optimal way on finite intervals the cost of the program (z k ) at time t = NT is 
N - - 1  

o(zi, Zi+l). We are interested, then, in the limit behaviour as N ~ oo of such 
i = 0  

expressions. 
Thus, in this paper we are interested in the programs (zk) ,  which are 

sequences in K, rather than in the way to achieve them. A hidden assumption is 
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that v(x, y) is finitely defined on K X K, namely a controllability type assump- 
tion. Generally this assumption is essential in order to establish our main results, 
as we demonstrate in section 4 by a counterexample. In certain convex problems 
it can be relaxed, namely, it suffices to assume the possibility of steering the 
initial state to some special state in a finite time (Brock and Haurie [2] establish 
their results under this assumption of controllability to a special point). 

Another assumption is that v is time-invariant; therefore the original control 
problem is, in general, either stationary or T-periodic. The lower semicontinuity 
of v and its boundedness hold for many problems. The same is true for the 
compactness assumption, namely in many examples one can show that all the 
reasonable solutions occur in a prescribed compact set. We comment on this in 
section 8. 

Example L A tracking problem. A linear time-invariant control system 

= Az + Bu (2.1) 

is given (here z ( t )~  R', u( t )~ R m) and suppose that it is controllable. The 
admissible control functions u are the measurable functions on [0, oe) such that 

forU ( t)u( t)dt  < for t > 0, where the + denotes o0 every superscript transposi- 

tion. A periodic trajectory F(t)  is prescribed and the purpose is to generate a 
trajectory z(t) of (2.1) which will be close to F(t) .  (Controllability does not imply 
that F( t )  is an admissible trajectory.) If a quadratic criterion is'adopted, then in 
applying the control u(t) in the interval [~-, ~ + T], to which corresponds the 
trajectory z(t) in that interval, the cost is given by 

c(u) = L ' + r ( [ z ( t ) - F ( t ) ] + O [ z ( t ) - F ( t ) ] + u + R u ) d t  (2.2) 

where the matrix Q is positive semi-definite and R is positive definite. 
Typically, no matter how one chooses u(t) on [0, oe), the cost on [0, T] will 

diverge to infinity as T ~ oe. 
To bring this problem under the framework described above we choose as a 

unit time the period of F(t).  We denote by v(x, y) the minimal cost in (2.2) when 
z(t) is subject to z(0) = x and z(T) = y. Then v is convex and continuous. As we 
show in section 8, one can identify a compact set K c R n such that the 
requirements in assumption I are fulfilled. 

Example II. Several authors studied the following problem. Given a continuous 
Lagrangian function ~ ( z ,  2) consider the cost 

Cr(Z ) = Lrep(t)£~'(z,2)dt (2.3) 

and study the existence of a function z(t) for which the growth of Cr(Z ) as 
T ~  oe is minimal. In [4] Rockafellar deals with a problem originating in 
economics and qv(t) there is an exponentially decreasing discounting factor. In [1] 
Bellman and Bucy consider such a problem with cp(t) -= 1. 

We assume that the functions z(t) and 2(t) are measurable and are con- 
strained to vary in compact sets in R ' .  Such functions (z(t), ~(t)) are called an 
admissible pair. 
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To bring this problem under our framework we denote by v(x, y)  the 

minimal value of f Lz~(z, 2)dt over all the admissible pairs (z(t) ,  2(t)) which 
k /  

satisfy z(0) = x, z(1) = y. In section 6 we follow this procedure in the case where 
q~(t) is monotonically decreasing to zero. 

Example I l l .  This problem, like the previous one, has its roots in mathematical 
economics. As remarked by Brock and Haurie [2] the problems of optimal 
economic growth and optimal accumulation of capital by a profit maximizing 
firm are two examples of this problem in the context of economics. It can also be 
interpreted as a nonlinear tracking problem where the tracked trajectory is 
F ( t ) -  0. 

We consider a nonlinear system 

2 = f ( z ,  u) (2.4) 

with a cost 

= (2.5) 

and an initial value z(0) = z 0. Both f and g are assumed to be continuous. The 
state function z and the control function u are subject to the constraints 
z ( t )  ~ K, u( t )  ~ ~, where K and ~2 are compact sets in R" and R m respectively. 
The class of admissible controls is composed of all the measurable functions u 
which satisfy u(t)  ~ ~ for all t >i 0. A pair (z, u) is admissible in [0, T] if u is an 
admissible control, 2 = f ( z ,  u) and z( t )  ~ K for all 0 ~ t ~< T. We assume that 
given (x, y )  ~ K × K there is an admissible pair (z(t) ,  u(t)) in [0,1] which satisfy 
(2.4) together with z ( 0 ) = x ,  z (1 )=  y. The problem is to "minimize" (2.5) as 
T---, m. This problem fits into our framework in an obvious way. 

Brock and Haurie [2] treated such problems with an additional convexity 
assumption. With convexity the controllability requirement may be relaxed (to 
that in [2]) as we note in section 4. 

3. The Reduction to Finite Costs 

We state now the main result, namely the existence of a reduction to finite costs. 
Recall tha t  a program is a sequence in K. The proof will follow several 
propositions. 

Theorem 3.1. There exist a constant t~ and a constant M > 0 such that: 
(1) For every program (zi}i~=o and every integer N>~O the inequality 

N 

[v(zi, z i+ l ) - /~  ] >1 - M holds. 
i = 0  

(2) For every program {zi}i~__o the sequence Y'~ [v(zi ,  z i+l)- l~ ] is 
i = 0  0 

either bounded or it diverges to infinity, and the set of all programs for which it is 
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bounded is nonempty. Moreover, we can choose M such that for every initial value z o 
there is a program {z*}~= 0 with z~ = z o which satisfies 

i N E [v(zr, 
= 0  

~< M for a l l N  >~ O. 

Just to indicate the usefulness of Theorem 3.1 we state two simple conse- 
quences of it. Let us introduce the following terminology: We shall call the 

N 

sequence { ~ V(Zi ,  Zi+l))~=0 the cost flow of the program { Zi}°~=O . We shall also 
i = 0  

I call the sequence Y'. [ v ( z  i, z i + l ) - #  the modified cost flow of the pro- 
i=O  N=O 

gram (zi}~= o. 

Corollary 3.2. The existence of a program whose cost flow diverges to infinity 
slower than any linear function, e.g. diverges like log N, implies the existence of a 
program whose cost flow is bounded from above. 

Proof  The reason is that the /~ of such a system should be nonpositive, 
otherwise there would exist a program whose modified cost flow is not bounded 
below, in contradiction to (1) of Theorem 3.1. Since # ~< 0, the boundedness of the 
modified cost flow of the program { z* }i=0 (see (2) of Theorem 3.1) implies the 
boundedness of the cost flow of this program, and this proves our claim. [] 

Corollary 3.3. I f  a program is such that at a certain time its modified cost exceeds 
2 M,  then there is a program, with the same initial value, whose cost-flow is less than 
that of  the former from that time on. 

Proof The reason for this is the following: If (z~)i~=0 is such that 
No N 

[V(Z i, Zi+I)--/~ ] > 2M, then by (1) of Theorem 3.1 ~_~ [v(z i, z / + l ) - # ]  > M 
i = 0  i ~ 0  

N 

for all N>~ No, and by (2) of Theorem 3.1 ~ [v(z*,  Z*+l)-/~] < M for all N>~ 0, 
i = 0  

N N 

where z~" = z 0. Therefore ~ v(z*,  z*+a ) < '~  v(zi, zi+a) , for all N>~ No, which 
~=0  i ~ O  

is our assertion. [] 
These two corollaries exhibit the fact that Theorem 3.1 is not just a growth-rate 

theorem, but  it also says something about the costs at finite times. To prove 
Theorem 3.1 we need the following three lemmas. Denote by ~,(N) the minimal 
averaged cost over all periodic programs of period N; namely 

N - 1  } 1 
• ( N)  = min (~,}~-o ~ i=0 ]~ v ( z i ' z ' + ' )  . (3.1) 

Z 0 = Z N 
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Let /z be defined as the infimal growth rate of cost flows over all programs, 
namely 

N - 1  ] 
# = inf l iminf 1 {zi}~Oo [ N--.oo -N i=0E v(zi, Zi+l) • (3.2) 

Remark.  The quantity ~ is a natural candidate to satisfy Theorem 3.1. In fact, if 
a quanti ty ~ does satisfy Theorem 3.1, then it satisfies (3.2) too. 

There is a close relation between the sequence (X(N)}  in (3.1) and the 
constant  # defined in (3.2) described as follows: 

Lemma 3.4. The following relation holds: 

/L = inf  X ( N ) .  
N~>I 

Proof On the one hand, it is easy to see that /~< X(N)  for every N, and 
therefore /~ ~< inf X(N). On the other hand, given an e > 0 there is a finite 

N~>I 
1 N--1 

program with N arbitrarily large such that ~ ~ v(zi, z,+l) </~ + e and there- 
i=O 

1 v(z~,zi+l)+ v(zN, zo) < # + 2 e ,  demonstrating that X ( N + I )  fore ~ i 

</~ +2e ,  so that inf X(N)~<~t. [] 
N~>I 

In the sequel we shall use/~ = inf X(N)  as the definition of/~. 
N~>I 

Lemma 3.5. The sequence X( N ) converges to I~. 

Proof Since v (x , y )  is bounded so is the sequence {X(N) )~=  1 and let a 
= l iminfX(N) .  We want to prove that limsup~,(N)~< a which will prove that 

N--* oo N---~ oo 
{X(N)}~= x is convergent. Given e > 0, there is an integer N such that X(N)  < a 
+ e. Since every program which is periodic of period N is also periodic of period 
k - N  for every integer k, and as the averaged cost over a period of length kN is 
the same as that over a period of length N it follows from (3.1) that 

X ( k . N )  <~ X(N)  for every k >/ 1 and N >~ 1. (3.3) 

Further  denote 

a = sup v(x,  y),  b = min v(x,  y).  (3.4) 
(x F)~K×K (x,y)~K×K 

Given any finite program { N t Zi } i = 0 '  replacing z 0 by z 0 ~ K may increase the cost 
by at most a - b, since the difference between the costs is 

U(Zo, Z1)--O(Z~,Z1) ~ a - b .  
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Similarly the replacement of z N by any z~v ~ K may increase the cost by at most 
(a  - b). Let N ' ,  N 1, N 2 be integers such that N ' =  N 1 + N 2. Let {zi}U20 be the 
program for which X(N1) is attained and {si}~2o the one for which X(N2) is 
attained. We replace s o and SN2 by z o = ZN1, identify s o with ZN, and form a finite 
p rogram of length N 1 + N 2 = N '  

z i O<~i <~N 1 

L =  s ~_ N, NI < i < NI + N2 

~z 0 i=  NI + N2 

Using this program, for which ff0=ffNl+N2 ' we get N')t(N')<~N1X(N1)+ 
N 2 X ( N 2 ) + 2 ( a - b  ). In particular take N ' = k N + r  where l < ~ r < N  then 
N ' X ( N ' )  <~ ( k N ) X ( k N ) +  rMr)+2(a  - b), and divide by N': 

~ +  r X ( r ) +  2 ( a -  b ) 
X ( N ' )  <~ k r ? t ( kN)+ k N + r  

For  k large enough the second term in the last inequality is less than e, and so by 
(3.3) and the way we chose N we get 

X ( N ' )  ~< e ( a + e )  kN - -  < a + 3 e  
k N +  r 

and this for all large k and every 1 ~< r < N. Thus we conclude that l imsup X(k) 
k ~ o o  

a since the preceding inequality is true for every e > 0. 
Had  there been N such that X ( N ) <  a then from (3.3): a =  l im in fX(k )  

k --* oo 
~< lim inf X ( iN)  ~< X ( N )  < a. So we get that a = inf X ( N )  and lira X ( N )  = ~t. [] 

i - - + ~  
Lemma 3.5 gives a growth estimate to the cost of periodic programs. The next 

l emma gives a result which is finer than merely a growth rate. 

Lemma 3.6. The following inequality holds: 

l i m s u p N [ X ( N ) - ~ l  < oo. 
N--~oo 

Proof Denote  by o ( N )  the minimal averaged cost over all finite sequences of 
length N (without any restrictions on the end values z o and zN): 

p ( N )  = rffln E v(zi ,  zi+l) . (3.5) 
( ~, ),~-o i = o 

We claim that p ( N )  ~ # for every N >/1. Suppose to the contrary that p ( N )  > # 
for some N. For  every integer k 

1 kN 1 l ( k . p ( N ) )  = p ( N ) ,  
k N  ~-" v(z i ,  zi+l) >~ -~ 

i = O  
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and this being true for every program { z i } implies p ( k N )  >1 o(N) .  Also from the 
definitions of 0 and )t in (3.5) and (3.1), p ( k N )  <~ X(kN),  so we get/~ < o ( N )  <~ 
o ( k N ) < ~ X ( k N )  for all k>~l. Letting k ~  we get a contradiction since 
X ( k N )  ~ # by Lemma 3.5. 

Recall the definition of a and b in (3.4). Let N >/1 be an integer and let 
{ zi }N= 0 be a finite program where p ( N )  in (3.5) is attained. If we replace in this 
program z u by  z 0 we get a periodic program of period N whose cost in the 
interval [0, N]  does not exceed that of the former by more than a - b, so we get 
for every N >/1. 

N-  X ( N ) -  N . p ( N )  ~< a - b. 

Combining this with p ( N )  <~ i~ leads to 

l i m s u p N [ X ( N ) - / ~ ]  ~< l i m s u p N [ X ( N ) - o ( N ) ]  <~ a -  b. [] 
N -~. oo N ~  

Before proving Theorem 3.1 let us introduce two abbreviating notations. We 
shall denote a program { z i }i~__0 by a bold face letter z, and for N >/1 

N--1 

mU(Z) = E [V(Zi, Zi+l)--l~] 
i = 0  

will be called the modified cost of z. 
Note  that the modified cost of a finite periodic program is nonnegative, since 

1 N--1 
f rom z o = z N and # = inf ~ ( N )  it follows that -~ ~ v(z~, zi+l) >1 I~ and there- 

i = 0  
f o r e  m N(Z) ~ 0.  

Proof of Theorem 3.1. We shall prove first the claim in (1), namely that for every 
program z and every N >/1 the inequality mN(z ) > / - ( a -  b) holds (recall (3.4)). 
Given z and N we replace z N by z 0 and thus reduce the modified cost on the 
interval [0, N]  by no more than a -  b. After the replacement, we get a periodic 
program, whose modified cost is nonnegative so we get mN(Z ) > ~ - - ( a -  b) as 
claimed. Put formally we have 

} mN(Z ) = [V(Zi,Zi+I)--t~I+[v(ZN_I,Zo)--Ia, l 
\ i = 0  

+ [V(ZN_ 1, ZN)-- V(ZN_ 1, Z0) ] (3.6) 

where the first term is nonnegative, while the second exceeds - ( a  - b). 
We prove now the assertion made in (2). We only have to prove the existence 

of a p rogram z for which (mu(Z)}~= 1 is bounded, for every initial value, and that 
the bound is independent of the initial value. (It follows from (1) that if 
( m n ( z ) } ~ =  1 is not bounded then it diverges to infinity.) Using Lemma 3.6 we 
choose 7 > 0 so that for all N >/1 we have 

N [ X ( N ) - I ~ ]  < "/. (3.7) 
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1 N-1  
Let {Zo N . . . . .  ZN N) be chosen so that z ~ = z ~  and • ( N ) =  ~ E V ( Z ~ , z N 1 )  . By 

i = 0  
N - - 1  

(3.7) we get ~ [ v ( z ~ , z ~ ) - i z ] < 3 ,  for all N>~I. We claim that if I > ~ N > ~ I  
then ~ = o 

N 1 

Y~ [ v ( z [ , z [ + , ) - I ~ ]  < "~ + a -  b (3.8) 
i = 0  

namely, the modified cost of the finite programs (z~ . . . .  , z[} computed on the 
interval of length N has a bound, uniform on 1 ~< N ~< l. Let us assume the 
converse: that for some l > N the opposite of (3.8) hold. We compute 

l - - 1  N - - 1  l 1 

E = E + E [v(zl, 
i = 0  i = 0  i = N  

As discussed in (3.6), the second term exceeds - ( a  - b), while by assumption the 
/ - - 1  

first one exceeds 7 + a - b so we get Y'~ [v(z[ ,  z[+a)-/~ ] >~ y + a - b - ( a  - b) = 2/ 
i = 0  

which is a contradiction. 
Now let I k --, ~ be an increasing sequence of integers such that z[* ~ z i for 

k ---~ ~ 
every i >/0. Then we have 

N--I N--I 

m N ( Z )  = E [o ( z i ,  Zi+a)--~ £] ~ l i m i n f  Y'~ [U(Z[k,Z[k+I)--~£] ~ ~1 -1- a - b 
i = 0  k --* ¢e i = 0  

and this holds for every N>~ 1. Thus conditions (1) and (2) are satisfied with 
M =  l'Y l + a - b. [] 

4. Comments and Examples 

In this section we comment  on five subjects: 
a. The question of computing/~. 
b. Some optimality considerations which are implied by Theorem 3.1. 
c. The compactness of K: We display an example where K is not compact  

and the conclusion of Theorem 3.1 is false. 
d. The rectangular structure K × K: We display an example where admissible 

programs are such that (zi, zi+l) ~ 9 ,  where ~ is a compact  subset of R n X R n, 
not of a rectangular shape, and show that the conclusion of Theorem 3.1 is not 
valid there. 

e. A relaxation iof the controllability assumption in some convex problems. 

4a. The question of computing/~ may be rather involved in general. In a special 
case when the cost of steering x to y equals that of steering y to x the 
computa t ion  is simple: 
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Proposition 4.1. I f  v(x, y )  = o(y,  x)  for all (x, y )  ~ K × K then 

l* = m i n { v ( x , y ) : ( x , y ) ~ K X K } .  

Proof Denote b = minv(x ,  y). Then for every program z inequality 
N - 1  

1 y ,  o(zi, z i+l)> b holds, and therefore X ( N ) > b  for all N>~I. By the 
Ni=--o 
property v(x ,  y )  = v(y,  x)  we get that X(2) = b, so that inf X(N) = k(2) = b and 

N~>I 
/~=b.  [] 

4b. As noted in the introduction, the reduction to finite costs provides us with 
easy means to compare programs. We shall define three concepts of optimality 
and explore the existence of optimal solutions. 

Definition 4.2. We define the following partial order among programs: x ~< y if 
x0 = Y0, and given an e > 0 there is an N O such that for all N > N O 

N N 

~-, v ( x i , x i + l )  < E v(yi,  Yi+I) + e" 
i = 0  i = 0  

An overtaking optimal program is a program s such that s ~< z for all z with 
s o = z 0 (following Gale [3] and von Weizsacker). 

Definition 4.3. We shall call a program s a weakly optimal program if for every 
z satisfying z 0 = s o and for every e > 0 there is a sequence of integers N k ~ o¢ 
such that 

Nk N~ 

E U(Si' S i + I )  < 2 l)(Zi, Z i + I )  -I- ~ for all N k. (4.1) 
i = 0  i = 0  

(Also in this definition we follow the above mentioned authors.) As we shall 
see in example 4.7 weakly optimal programs may fail to exist. 

Let us introduce the following concept 

Definition 4.4. A program s is called &weakly optimal program if there exists a 
sequence of integers N k ~ ~ such that for every z with z 0 = s o the inequality 

N~ N k 
Y'. v(si, Si+a) < ~ v(z i, zi+l)+ 8 holds for all large enough k. 

i = 0  i = 0  

Remark. The distinction between weakly optimal programs and &weakly opti- 
mal programs is the following: If s is a weakly optimal program then it costs less, 
up to every e, than any other program on an infinite number of intervals [0, Nk]. 
These intervals depend on the compared program. If s is a &weakly optimal 
program then all costs are compared up to 8, and the sequence of intervals is 
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i n d e p e n d e n t  of  the  p rog ram which is c o m p a r e d  to s. Therefore ,  a weakly  op t ima l  
p r o g r a m  is no t  necessar i ly  a 8-weakly op t ima l  p rogram.  

Here  is an  immed ia t e  consequence  of  the reduc t ion  to f inite costs:  

Proposit ion 4.5. Given initial value z o = a a n d  t~ > 0, there is a 8-weakly  op t imal  

p r o g r a m  s sat is fy ing s o = a. 

P r o o f  Def ine  the  funct ional  • by  

¢ ( z )  = l i m i n f m N ( z  ). 
N ---* oo 

By T h e o r e m  3.1, ¢ ( z )  is b o u n d e d  f rom be low b y  - M. Therefore  we can choose  
z~ wi th  ( z s )  o -- a such that  ~ (z~ )  < ~ ( z ) +  t~ whenever  z o = a. Let  N k ~ oo be  
such tha t  mNk(Zn) --* ¢ ( z s ) .  Then  N k is the sequence needed  in Def.  4.4 and  z 8 

k --* oo 
is a ~-weakly  op t ima l  p rogram.  [] 

The  fo l lowing  example  exhibi ts  the poss ib i l i ty  of  existence of  a weakly  
o p t i m a l  p r o g r a m  along with  nonexis tence  of an op t ima l  p rogram.  

E x a m p l e  4. 6. Cons ide r  the funct ion v : [ - 1 , 1 ] x  [ - 1,1] --* R 1, given b y  v (x ,  y )  = 
(x + y ) 2 +  x -  y.  Since for  every per iod ic  p r o g r a m  the cost  is nonnegat ive ,  we 
d e d u c e  tha t /~  >~ 0. But comput ing  the cost  for  the p r o g r a m  z i = 0, i >~ 0, leads  to 

N - 1  

/~ ~< 0, so /~ = 0. F o r  a p rog ram z we have mN(Z ) = E ( Z i  "~- Zi+l) 2 "~- ZO - -  ZN" 
i = 0  

N - 1  

T h e  m i n i m i z a t i o n  of  ~ ( z  i - Zi+l) 2 under  the cons t ra in ts  z o = A and  z N = B is 
i = 0  

o b t a i n e d  b y  

z k = ( - 1 ) k ( A + k h ) ,  0 ~< k ~< N,  

B - A  A + B  
where  A ~ if N is even, and  A -- ~ if N is odd.  

W e  c la im:  If  z is weakly  op t ima l  then z = { Zo, - Zo, Zo, - z o . . . .  }. The  reason  
is the  fol lowing:  Suppose  z is weakly  op t ima l  and  there is an N >/1 such tha t  
z u -4= ( - 1 ) N z 0  . Assume  N is even and  let  3 = [(z u - Z o ) / N  [ . W e  choose  N 1 even 

N I - 1  

and  so large tha t  2 / N  1 < & As men t ioned  above  the m i n i m u m  of  Y'~ ( x  i + Xi+x) a 
i = 0  

subjec t  to x 0 -- Zo, Xg  1 = zUl is ob ta ined  by  

xk= (--1)k[Zo+k(ZNI--Zo)] 
U l  ' 

but { x o ,  x 1 . . . .  , XN1 } :~ ( Z 0 ,  Z 1 . . . .  , ZN1 } since 

ZN1-  Z o N 2_.2_ 
Ix N - z o l  = N I - - ~ - - - -  1 < N1 < N~ = ]z N - z 0 [ .  
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So we can replace the segment ( z0 , . . . ,  ZN1 } by ( x  o . . . .  , XNI } (recall that  XN1 = ZU, ) 
and thus strictly lower the cost for all large times. Therefore  the claim is proved.  

W e  c la im now that  for z 0 > 0 the p rog ram { z0, - z0, z0, - z o . . . .  } is weakly  
opt imal .  Otherwise,  by  (4.1), there is a p rog ram s, and e > 0 and N o such that  

mZu(S ) ~< 2Z 0 + e (4.2) 

and  

mZN+I(S ) ~< - - e  (4.3) 

bo th  for  all N > / N  0. Substi tuting the explicit expression for mN(S ) we get f rom 
2 N - - 1  

(4.2) Y'~ (s  i + Si+l) 2 + z o - S2N <~ 2Z 0 -- e and f rom this S2N > e -- Z o. Similarly, 
i = 0  

subs t i tu t ion  of  m2N+l(S ) in (4.3) leads to S2N+I> e +  Z 0. Adding  the last two 
CO 

inequali t ies we get S2N + SZN + 1 ~ 2e which contradicts  the finiteness of  ~ (si + 
i = 0  

s i+l)  2. Thus  z = {Zo, - Zo, Zo, - z o . . . . .  } is weakly optimal.  
H a d  there been  an overtaking opt imal  program,  it should have been this same 

p r o g r a m  z. But for  the p rog ram y = { Zo, - ½Zo,0,0,0, . . .  } we do not  have z ~< y, 
since m2u(Z ) =  2z o > 1 2 ~2  0 + 2 0 = m 2 m ( Y  ) for N > I .  

The  next  example  will demons t ra te  nonexistence of weakly-opt imal  pro-  
grams.  

Example  4.7. Let o : [ - 1 , 1 ] × [ - 1 , 1 ] - - * R  1, v ( x , y ) = ( x + y ) 2 + 2 ( y 2 - x 2 ) .  
Reason ing  a s  in Example  4.6, the only candidate  to be a weakly opt imal  p rog ram 
is z =  { z 0 , - Z o ,  Z o , - Z  o . . . .  }. If  we compare  it with y =  {z0 ,0 ,0 ,0 , . . .  } we see 
that  m N ( y  ) = - - 2  2 for every N, while m u ( Z  ) = 0 ,  SO Z i s  not  a weakly op t imal  
p rogram.  

4c. We display  now an example  which shows that  the compactness  assumpt ion  
concern ing  K in Theorem 3.1 cannot  be  dispensed with. 

E xample  4. 8. Let  o : [0, oo) x [0, ~ )  ---, R 1 be  the convex funct ion given by  o (x ,  y )  
1 

= ( y  - -  X - -  1 )  2 + - -  W e  establish the following two facts: 
x + l "  

(i) £ v(z , ,  z i+l)  = ~ for every p rog ram (Zi}i°°=O . 
i = 0  

1 N 
(ii) There  is a p rogram {z i }  such that  ~ ~ v ( z ~ , z i + l ) ~ O  , namely:  

l = 0  
N 

~_, v ( z  i, Zi+l) tends to infinity slower than  any linear rate. 
i = 0  

F r o m  these two facts, together  with the simple consequence ment ioned  after  
T h e o r e m  3.1 it follows that  the conclusion of Theo rem 3.1 is false in this example.  
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We take any sequence (zi)i~ 0 with z i > 0, and suppose that ~. v ( z i ,  z i+ l )  
i = 0  

< ~ .  Then clearly zi+ 1 - z i - 1  -+ 0, and therefore z~+ 1 < ~ + 2  for i > i 0. From 

this follows that z i < zio + 2 ( i -  i0) for all i > i0, so that ~ 1 i = o zi + 1 = m '  conse- 

quently ~ v ( z  i, Zi+l) = oo, contradicting the assumption. So (i) is established. 
i = 0 

U - 1  N 1 

Considering the sequence z i = i, i = 0 ,1 ,2 , . . .  we get ~ v(z i, i+1) = ~ 7 '  
i = 0  i = 0  

and (ii) is satisfied for this sequence. 

4d. Instead of considering functions v : K × K ~ R 1 for compact  sets K c R ' ,  
we could have considered functions v : ~ ~ R t, where ~ is compact  in R" × R" .  
Then a program is defined as a sequence (z  i } i~ o satisfying (zi, z i+ 1) ~ ~ for all 
i > 0. The following example demonstrates the fact that in general the conclusion 
of Theorem 3.1 is false unless the set ~ has a rectangular shape K × K. 

The way by  which Example 4.9 does not satisfy the conclusion of Theorem 
3.1 is this: We show that for/~ >~1 all the modified cost flows diverge to - o o ,  
while for /~ < 1 all of them diverge to + o0. Thus it is impossible to find a /~ 
satisfying the conclusion of Theorem 3.1 

E x a m p l e  4.9. Let .@ C R 2 be the following line 

~@ = { ( x , y ) : y = ½ ( x + l ) , ½ < . . . x < . , . 1 }  

and let v : ~ ~ R x be given by 

[ log2(1 -  x ) ] - 1 + 1  i f ½ ~ x < l  
v ( x , y ( x ) )  = 1 if x = l  

Then it is easy to see that v is a continuous and convex function on ~ .  
We take any initial value ½ ~< z o < 1. If we choose/x < 1, then the modified 

cost flow will diverge to + o0: to see this we note that the only admissible 
p rogram s tar t ing  at z 0 satisfies z k -+ 1, therefore [v(zk, z k + l ) - / , ]  -+ 1 - / *  > 0, so 

we get ~ [ v ( z k ,  z ~ + l ) - - i ~ ] = ~ .  
k = O  

On the other hand, if we choose ~ > 1 ,  then ~ [V(zk ,  z k + a ) - - ~ ]  
k = O  

~< ~ [ log2(1 -zk) ]  -1. The latter series diverges to - ~ .  To see this we note 
k = O  

that  if x satisfies 1 - 1 / 2  p ~< x < 1 - 1 / 2  p+I for some integer p, then for y such 
that (x, y )  ~ ~ we have y = ½(x + 1) and therefore 

1 1 
1 2p+1 ~ y < 1 2p+2. 
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If  1 - 1 / 2  p ~ z o < 1 - 1 / 2  p+I then [ log2(1-  z0)] -1 < - ( p  +1)  -1 and by the 
above calculation we get [ log2(1-  z , )  ~1 < - ( p  + k + 1) -1 and the assertion is 
proved. 

To  conclude: the cost flows diverge to infinity slower than linear function 
L ( N )  = N but faster than any linear function L ( N ) =  )~N with 2~ <1.  

The same phenomenon with the same proof occurs in the following example: 
is the triangle ( ( x , y ) ~ R 2 : x < ~ y < ~  ½(x +1),  ½ ~ < x ~ l }  

[ l o g 2 ( y - x ) ] - l + l  y > x ,  ( x , y ) ~  
v ( x , y )  = 1 y = x ,  ( x , y ) ~ .  

4e. We demonstrate now that the pathology described in Section 4d cannot 
occur in a certain special case. In Example 4.9, the minimum of to(z, z) was 
achieved in a boundary point of ~ ,  and this we want to prevent now. 

We prove the following: Let ~ be a compact and convex subset of R n x R ", 
tO ." ~ ---+ R 1 is a convex function, (d, d)  e int ~ ,  to(z, z) > v(d, d) for all (z, z) E 
and the initial value z 0 can be steered to d in a finite time i.e. there exists a 
program z o = x0, x I . . . . .  x N with x N = d and (xi, Xi+l) ~ ~@). Under these condi- 
tions the conclusion of Theorem 3.1 is valid. 

We outline the proof: Let U c ~ be a ball around (d, d). Recall that for a 
real valued function cp: ~--+ R 1 the set epicp is defined by {(r, x ) :  x ~ ~ ,  
r > ¢p(x)}. Le t  A c R ~ × R ~ × R 1 be  def ined  by  A = ( ep i t o )U  
{(x, x, v(d, d)) :  (x, x ) ~  U} and let w(x, y)  be the function whose epigraph is 
convA (namely the closed convex hull of A). Then it is easy to see that 
w(z, z)  > v(d, d)  for all (z, z) ~ ~ .  

Evidently as epi v __c epiw, the inequality w(x, y )  <~ v(x,  y)  holds for every 
(x, y )  ~ ~ .  Since (d, d)  is an interior point of ~ ,  and w: ~ + R 1 is convex, there 
is a subgradient vector for w at (d, d). From the fact that w(z, z) = to(d, d)  for 
every (z, z ) ~  U it follows that the subgradient vector at (d, d)  is of the form 
(~, - 7), where ~ ~ R n. Thus we get the inequality 

to(x, y) >/w(x, y)  >_. to(d, d)  + (n +, x - y )  (4.4) 

for all (x, y )  ~ ~ .  Here ( a  +, b)  denotes the scalar multiplication between two 
vectors a and b in R ~. For every program z we have 

N - 1  

E 
i = 0  

[o(z,.Z,+l)-O(d.a)] >_- (.+.z0-z.,> 

and the right hand side has a uniform bound over all z and all N. On the othel 
hand, by assumption, there is a program z such that ZUo = d for some N 0. If  we 

choose z u = d for all N >  N o then the modified flow ~ [v(zi, Z i + l ) -  v(d, d)] is 
i = 0  

bounded.  
We note therefore that the conclusion of Theorem 3.1 holds and furthermore 

the constant/~ is equal to the value v(d, d). 
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5. A Useful Representation 

In this section we shall confine ourselves to continuous cost functions v (x ,  y) .  
(We shall formulate, but not prove, the analogous result for v (x ,  y )  lower 
semicontinuous.) 

We intend to represent every continuous function on a compact  rectangular 
domain in a special way, which has a close relation to the reduction to finite costs. 

Proposition 5.1. L e t  K c R n be compact and v : K × K ---> R a be a continuous 
function. Then v can be represented as follows: 

vCx,  y )  = l~ + r r C x ) - r r C y ) +  OCx, y )  where (5.1) 

(a) /~ is a constant; 
(b) fr : K ~ R a and 0 : K × K ~ R 1 are continuous functions; 
(c) 0 is nonnegative and E ( x )  = { y  ~ K :  O(x, y)  = 0} is nonempty for every 

x ~ K .  

Comment.  Knowing that v has this representation enables us to give a simple 
proof  to Theorem 3.1. In fact we take M = 2  max [~(z)[ and then for every 

z E K  
program z: 

N - 1  N - I  

E [V(Zi,Zi+l)--~] = E O(Zi, Zi+l)'~- ~(Zo)-- qT(ZN) ~ --m, 
i = 0  i = 0  

while for a program chosen by zk+ i *  ~ E ( z ~ )  

N - 1  

Y'~ [ v ( z : , z * + i ) - g ]  = [~r(Z~v)-~r(z~) [ ~< M. 
i = 0  

Our method,  however, is the other way around: we use the existence of the 
reduction to finite costs in Theorem 3.1 to prove Proposition 5.1. 

Proof  of  Proposition 5.1. Let/~ be as guaranteed in Theorem 3.1 and defined in 
(3.2). Define ~r : K ~ R 1 by 

~r(x) = inf { l iminfmN(z)} .  (5.2) 
z 

Z o ~ X  

Given any pair  (x, y )  ~ K X K we claim that ~r(x) ~< [v (x ,  y ) - / ~ ] +  qr(y). The 
reason is: If  we confine ourselves to programs z such that z 0 = x, z 1 = y  and 
compute  the right hand side of (5.2) over these programs only, then we get 
[v(x,  y ) - / ~ ] t  ~r(y). Of course ~r(x) is not greater than this vaiue. 
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We define 0: K × K ~ R i by 

OCx, y )  = vCx, y ) -  ~ + ~ ( y ) -  ~ ( x )  (5.3) 

and get (5.1) with 0 nonnegative. The uniform continuity of v on K × K implies 
the continuity of ~r, and thus, by (5.3), the function 0 is continuous too. 

It only remains to prove that E ( x )  is nonempty for every x ~ K. Suppose to 
the contrary that for some x ~ K 

min{ O(x, y ) :  y ~  K ) = 8 > O. (5.4) 

There is a program z such that: Zo=X and l iminfmN(z)< or(x)+ ½8. We 
N---~ ~ 

compute: 

q r ( x ) +  ½8 > l iminfmN(z ) = [O(X, Z1)~-~(X)--qT(Z1) ] 
N---* ~ 

N 

+ liminf ~ [V(Zi, Zi+I)--~] 
N - - ~  i = 1  

[8 + ¢ ( x ) -  ¢(Zl)] +  (zl) 

So 7r(x)+ ½8 > ~r(x)+ 8, a contradiction; hence (5.4) is false. [] 
For  v(x,  y )  which are merely lower semicontinuous, we have the following 

analogue of Proposition 5.1: 

Proposition 5.1'. Let v : K × K ~ R i be bounded and lower semicontinuous. Let 
( c') be the condition: 

(c ')  0: K × K ~ R i is nonnegative and for every X ~ K, inf (O(x, y) :  y 
.V~ K 

K } = O. Then v admits the representation (5.1) with (c') replacing (c). 
The proof is essentially the same as that for Proposition (5.1) with only minor 

modifications. We leave out the details. 
Following Gale [3], let us introduce the following terminology: 

Definition 5.2. A program z is called a good program if (mN(z)}~= 1 forms a 
bounded sequence. 

We apply propositions 5.1 and 5.1' to show how one can build good 
programs. Generally, for lower semicontinuous functions, this can be achieved by 
choosing z so that O(Zi, Zi+l) < 1 / 2 (  If v(x, y )  is continuous this can be done in 
a dynamical programming type way, by constructing a z which satisfies zi+ 1 
E(z~). For a program so generated we get 

N-1 
E 

i = 0  

= ]~r(Zo)-~r(Zu) I <~ M, 

proving that z is a good program. 
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The representation (5.1) always holds for continuous v(x ,  y).  If it happens 
that the cost function v(x ,  y )  has the following form, which is more restrictive 
than that in (5.1), then we can establish the existence of overtaking optimal 
programs (recall definition 4.2). 

Proposition 5.3. Let v : K × K ~ R 1 be a continuous function which admits a 
representation v(x ,  y )  = ~ + ~r(x) -  ~r(y)+ O(x, y) ,  where 

(i) /~ is a constant, 7r : K ~ R 1 and 0 : K × K ~ R 1 are continuous functions. 
(ii) 0 is nonnegative and there is an element p ~ K such that (x,  y )  = (p ,  p )  i f  

and only i f  O(x, y )  = O. 
Then for every initial value there is an overtaking optimal program. 

Proof If z is a good program then there is a bound on 

i=0E o(z,,zi+l)]N=l, 
consequently O(zi, Zi+l) ~ 0, and condition (ii) implies that z~ ~ p. So for every 
good program z we have 

[O(Zi, Zi+l)--"] = ~ ( Z 0 ) - -  qT(p)-~- ~ O(Zi,Zi+I)- 
i = 0  i = 0  

The functional z ~ ~ O(z~, zi+l) is lower semicontinuous as a functional on 
i = 0  

the set of programs endowed with the topology of pointwise convergence (if 

zk---'z and O(zi, z i + l ) = a  then given e > 0 ,  ~ O(zi, z i + l ) > a - e  for some 
i = 0  i = 0  

N 

N, so ~ O(z~, z~+~) > a - 2 e  for k large). Let s be a program which minimizes 
~=0 

this functional. Clearly s is a good program so it minimizes the functional z 

~ [ v ( z ,  Zi+l)-/~] too and the overtaking optimality of s follows. [] 
i = 0  
As a corollary we get the following result, concerning convex functions 

v (x ,  y): 

Corollary 5.4. Let v(x,  y )  be strictly convex in (x,  y),  such that the function 
z ~ v(z ,  z)  has a minimum at p ~ K. Then for every initial value there is a unique 
overtaking optimal program. 

Proof By (4.4) there is a ~ R "  such that v ( x , y ) > ~ v ( p , p ) + ( ~ + , x - y ) .  
Define ~ = v (p ,  p )  and O(x, y )  = v(x ,  Y ) - t ~  - (rt +, x - y ) .  Then 0 is nonnega- 
tive and strictly convex. Since O(p, p)  = 0 it follows that whenever (x, y)  4= (p ,  p)  
then O( x, y )  > O. [] 

Example 5.5. Let V(x,y)=(l+x2+y2)l/2--x 2, 0~<X~I and 0~<y~<l. We 
claim that there is an overtaking optimal program for every initial value. Denote 
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r 2 : X2 + y2 and let P = (1 + r 2 )  1/2. Then we can write v(x ,  y)  = ½11 + p ( 2 -  p) 
+ y2 _ x 2] which may be given the form required in Proposition 5.2, by/~ = v~- 
- 1, w(x) = - ½x and O(r) = ½[0(2-  0 ) + 3 -  2V~-]. We have O(r) > 0 for 1 ~< r 
< v~ and 0(v~) = 0, so the claim follows from Proposition 5.3. 

6. An Application: Costs with Discounting Factors 

It is customary in mathematical economics to introduce into the costs expressions 
a discounting factor. Usually this factor is chosen to be an exponentially 
decreasing function, which reflects the result of a constant interest rate. The 
introduction of an exponentially decreasing discounting factor induces on the 
interval [0, ~ )  a finite measure, and in many cases makes the set of trajectories 
compact in a suitable topology. 

We discuss here a discounting factor which tends to zero, but may do so very 
slowly. Therefore compactness arguments which work for the exponential decay 
would not work. We consider the following problem: v: K × K ~  R ~ is a 
continuous function. {ai}7= 0 is a sequence of positive numbers converging 
monotonical ly  to zero. For a program z we study the cost flow 

i = 0  N=0" 

Anologous to Definition 4.2 we define here an overtaking optimal program as 
a program {sK)T= 0 such that for every e>  0 and every other program z with 
z 0 = s o we have 

N N 

~-, akv ( s k , s~+l )  <<- E akV(Zk, zk+l)  + e (6.1) 
k = 0  k = 0  

for all N large enough. 
Using the representation formula (5.1) we can establish the existence of an 

overtaking optimal program for the present problem. We emphasize that (~i} 

may decrease to zero very slowly so that still ~ aiv(z i ,  z /+ l )=  ~ for every 
i = 0  

program. 

Theorem 6.1. Let  v: K × K --* R 1 be continuous. Let  ( ai } i~=o be a nonincreasing 
sequence with ai --* 0 as i ---> ~ .  Then for every initial value z o there is an overtaking 
optimal program s with s o = z o. 

Proo f  Using (5.1) we compute for z 

N 1 

i = 0  

N - 1  

2  iO(z , zi+l) +  0 (z0) - 
i = 0  

N - 1  

+ E 
i = 1  

(6.2) 
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The series ~ aiOi(Zi, Zi+l) is either convergent or diverges to infinity, by 
i = 0  

positivity, and the series ~ (a i - ai_x)Tr(zi) converges, since ~2(ai - ai_l) con- 
i=1 

verges absolutely. So we denote 

i = 0  

o~ 

t]Ol(Z) = E (O~i-- OLi-1)qT(Zi) 
i=1  

Cp2(Z ) = ~ OLiO(Zi, 2i+ 1) 
i = 0  

(6.4) 

and have the relation ¢p(z)= C p l ( Z ) + C p 2 ( Z ) + O t 0 q r ( z 0 ) .  We consider the set of 
programs endowed with the topology of pointwise convergence. We claim that in 
this topology both cp 1 and ¢P2 are lower semicontinuous. 

Lower semicontinuity of ¢P2 follows since O(x, y) is positive and continuous. 
(Compare with the proof of proposition 5.2) 

Lower semicontinuity of ¢P1: Let z k ~ z and let e > 0. Then there is an N 

such that for every program ~ (a  i - -  a i 1)"B'(Si) < e/3 .  For this N 
i=N 

i=N i - N  
N-1 

+ 2 )] 
i=1 

If k is large enough the third term is less than e /3  so that cp(z) < cp(zk)+ e for all 
large k. 

Thus we conclude that cp itself is lower semicontinuous in this topology and 
by compactness of K and boundedness below of ~ there is a program s such that 
cp(s) ~< cp(z) for all z. To prove (6.1), given any program z and an e > 0 there is N~ 
such that for all N > N~ 

N N 

E OL[U(Si, Si+I)--~] ~ E Oli[U(Zi, Zi+l)--~]-I- ~. 
i = 0  i = 0  

N 

Now (6.1) follows by adding # ~ a i to both sides of the inequality. [] 
i = 0  

We shall employ now Theorem 6.1 to study continuous time control systems 
which are represented by an ordinary differential equation, and whose cost 
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integrand contains a discounting factor. Namely, we consider a system 

2, = f ( z ,w~  

T 
c r ( u  ) = fo(z(t) ,  u(t))cp(t) dt 

(6.5) 

where z(t) ~ K, u(t) ~ ~ for 0 ~< t -4< T, while K and fa are compact subsets of R n 
and R m respectively, and q0(t) is a positive scalar function which decreases 
monotonically to zero. The admissible controls are all the measurable functions 
u(t) for which the constraints u(t) ~ ~ and z(t) ~ K are satisfied (where z and u 
are related as in (6.5)). We assume the following: 

(1) The functions of f and f0 are continuous on K × ~2. 
(2) A controllability assumption: For every (x, y ) ~  K × K there is an 

admissible control u(t) with a corresponding trajectory z(t) which satisfies 
z(0) = x, z(1) = y. 

(3) The function v(x, y) defined on K × K by 

{£ v ( x , y )  = lnf fo(z(t) ,  u(t)dt: £ = f ( z , u ) , z ( t ) ~ K ,  

u(t) ~ a, z(O) = x, z(1) = y} 

is continuous on K × K. 
(4) The function 

WT(X, y )  = m i n { f r r + l f 0 ( z ( t ) , u ( t ) ) ~ ( t  )dt: ~= f ( z ,  u), z(t) ~ K, 

u(t) ~ a , z ( r )  = x, z (T  + l) = y} 

is well defined (namely, the minimum is attained by a certain admissible control), 
and is continuous on K X K. This for every T > 0. 

Remark.  There can be given explicit assumptions concerning f and f0 which 
guarantee the validity of (3) and (4). However, they seem to be too restrictive and 
we prefer the implicit assumption (3) and (4). 

Assumption (3) guarantees a constant /, with the properties which are 
described in Theorem 3.1. 

Theorem 6.2. Let the control system (6.4) satisfy assumptions (1), (2), (3) and (4). 
Then for every initial value z o E K there exists an overtaking optimal solution z*(t) 
satisfying z *(0) = z 0. 

To prove Theorem 6.2 we shall need the following Lemma: 
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Lemma 6.3. Given an ~ > 0 then there & a time T O > 0 such that 

f2[fo(Z(t),u(t))-~]q~(t)dt > - e  forevery T z > T 1 >~ T O (6.6) 

for  every z(  t ) ~ K and every u( t ) ~ ~. 

Proof  It is enough to prove the claim for TI, T 2 integers. Denote by ~p(t) the 
function ~b(t)= q~(k) for k ~<t < k +1. For all integers M >  N and functions 
z(  t ) ~ K,  u( t ) ~ ~2 the following equality holds: 

M Z 
SN [fo( , u ) - # ] c p ( t ) d t  

= f lio(z,u)-.]D(t)- (t)ldt + 

Let A be a bound on [f0(z, u)-/~[, and notice that Lgicp(t)-- ~p(t)[ dt <~ q~(N) so 
/ 1 #  

the first term in the last equation exceeds [ -  Aep(N)]. For the second we estimate 

M - 1  

S? +' m f o ( z , u ) _ # ] 6 ( t ) d t  >~ y~ q~(k) [ f o ( Z , U ) - t ~ ] d t  
k = N  

M - 1  

E 
k = N  

By (6.2) the last expression can be estimated by 

M - 1  

q ~ ( N ) T r ( z u ) - - e P ( M - - 1 ) T r ( Z M ) +  E [cp ( i ) - - cp ( i - -1 ) ]Tr ( z ( i ) )  
i = N + I  

and by boundedness of I~r(z)[ and qo ( t )~0  this estimate is less than ~ in 
absolute value if N is large enough, thus the claim is proved. [] 

Proof  of  Theorem 6.2. From (6.6) it follows that for every z(t) ~ K, u(t)  ~ ~2, the 

f0 expression [fo(Z(t) ,  u ( t ) ) - l ~ l ~ ( t )  either concerges or diverges to infinity. 

Moreover, for good programs this integralis finite (because the convergence of 

~_, O(zi, z i+l)  clearly implies that of ~_, a f l ( z  i, Zi+l) if a i ~ 0). Let m = 
i = 0  i = 0  

U inf [fo(z,  u ) - / ~ ] ~ ( t )  dr, where u and z are related by the differential equation 

~. = f ( z ,  u) and initial condition z(O)= x ~ K, and where the infimum is taken 
over all admissible controls. Then there are admissible pairs (Zk, Uk) such that 

)) ] Zk( t ) ,  uk( t  --t ~ cp(t) dt = m k --* m.  

It can be assumed that zk(i  ) -o z ( i )  for all i >.>- 0, and by assumption (4), define 
k ---~ oo 

f / i  +1 z ( t )  in [i, i + 1 ]  as a minimal solution of fo(X( t ) ,  u ( t ) ) ~ ( t ) d t  satisfying 
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x ( i )=z ( i ) ,  x ( i + l ) = z ( i + l ) .  Now by assumption (4) (the continuity of 

WN(X, y)) and Lemma 6.3, it follows that, given e > O, [fo(z(t), u(t))-/~]~(t) 

~< m + e for all large T, so we conclude [fo(Z(t), u( t ) ) -  ~]q~(t) dt = m and 

z(t) is an overtaking optimal solution. [] 

Remark.  This result can be viewed a little differently: Given an initial value 
x ~ K there exists a constant m so that for every admissible pair (z(t), u(t)) with 
z(0) = x the following limit exists and satisfies 

lifno~ ( f o T f ( z ( t ) ,  u ( t ) ) c p ( t ) d t - [ m  +lZfoTq~(t)dt]} >~ O 

while there exists an admissible pair (z*(t)*, u(t)) with z* (0 )=  x for which the 

equality holds. The function T ~  m + I~J2"cO(t)dt expresses the minimal cost 

growth as T ~ ~ .  

7. An Application 

Bellman and Bucy considered in [1] the minimization of 

1£T 
e T [ . ]  = 

where t ---, u(t) and t ~ z(t) are scalar functions, u is measurable on [0, ~ ) ,  and 
u, z are constrained by 2 = f ( z ) + u  and z ( 0 ) = x ,  for a certain x ~ R 1. They 
studied this problem from several aspects and raised two questions which we 
quote as follows: 

(1) When does the problem for T = oe make sense? 
(2) When it does, are the optimal states and controls for infinite T the limits 

of those for finite T? 
The analysis in [1] is carried under quite restrictive assumptions. We shall 

treat this problem under more general assumptions, which are the following: 
(i) The function f is continuous and there exists a constant a > 0 such that 

I f (x)[  ~< a ( lx  [ +1)  for all - oo < x < 0o. 
(ii) L(x )  ~ oo as [x[ --+ oo and [ f (x ) ]  2 + L(x)  is strictly convex. 

Conditions (i) and (ii) are fulfilled under the assumptions made in [1]. 
We define 

Substituting u --- 2 - f ( z )  in the cost integral, we get 
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dF 
Taking F ( z )  such that -fiZz = f ( z ) ,  defining M ( z ) =  [ f (z)]2  + L ( z )  and 

we get vo(x, y )  = v(x ,  y ) + 2 F ( x ) - 2 F ( y ) .  
By (ii) M ( z )  is strictly convex, therefore v(x ,  y )  is strictly convex. Therefore 

it is continuous on R 1 × R 1, implying the continuity of Vo(X, y )  on R" × R". 
The system in this problem is controllable since for every (x, y )  ~ R 1 × R ~ we 

can choose z ( t )  = x + t ( y  - x), u(t )  = y - x - f ( x  + t ( y  - x)).  
We claim that Vo(X, y )  ~ co as Ix I + ]y[ ~ oo. Let M > 0, let u(t)  be such 

that 

f01u2(t) dt <~ M,  (7.1) 

and let 2 = f ( z ( t ) ) +  u(t) ,0 ~< t ~<1. Take z(0) = x to be a large positive number, 

dz [ te-a( t -~)u( 'r  )d'r - 1 then ~ -  >~ - az + u - a, which yields z( t ) >~ e -  ~tx + SO w e  
~o 

get z ( t )  >1 e-~tx - M 1/2 - 1, by (7.1) and the Cauchy-Schwarz inequality. So if x 
is large enough, we have (by L ( z ) ~  oo as z ~ oo) that L ( z ( t ) ) >  M for all 
0 ~< t ~<1. From this, together with (7.1), it follows that Vo(X, y )  >i M for all large 
enough x and all y. Similar computation for large positive y, and for large 
negative x or y conclude the proof of the claim. 

By the assertion that will be stated and proved in section 8, it follows that a 
compact K c R 1 exists such that only trajectories z( t )  ~ K need to be considered 
in the optimization problem. 

Now returning to the equality v0(x, y)  = v(x ,  y ) + 2 F ( x ) - 2 F ( y ) ,  and recal- 
ling that o(x,  y )  is strictly convex, it follows from comment 4e and Corollary 5.4 
that o ( x , y ) ,  hence Vo(x ,y  ) is represented as required in Proposition 5.3, 
consequently there exists an optimal overtaking solution to the problem. Because 
of strict convexity it is unique. 

In this problem/~ is given by min{ M(z):  - oo < z < ~ }  which we denote by 
a, and by strict convexity and M ( z ) ~ o o  there is a unique z 0 such that 
a = M(zo) .  To see that # = a, let z ( t )  be a periodic trajectory of period N >f 1. 

1 N 2 1 U 
Then ~ f ,  [~(t) + M(z( t ) ) ]d t  >i -~ f ,  M ( z ( t ) ) d t  and by the convexity of M 

i d  

and the Jensen inequality (see Rudin [5], page 63), 

1 N 1 N 

Hence bt >t a, while/~ ~< a follows from a = M(zo) .  If/~ = 0, then the problem is a 

minimization of finite integrals. If ~ 4= 0, still [u 2 + L ( z ) -  #] dt can be made 

finite, so as an answer to the question raised in (1), the problem does make sense. 
Denote  by z r ( t  ) and u r ( t  ) the unique optimal solution and optimal control in 
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the interval [0, T).  It follows f rom the discussion in Proposi t ion 5.3 that z ~ ( t )  
Zo, and that  u ~ ( t ) ~  O. It  is also possible to show that z r ( T ) ~  z o and in fact 
Z r ( t  ) ~ z ( t )  as T ~  ~ .  The optimal modif ied cost for the finite intervals con- 
verges to the opt imal  modified cost for the infinite interval. These answer in the 
aff irmative the question raised in (2). 

8. On the Compactness of K 

In  this section we prove that in a certain special case one need not  assume the 
existence of  a compact  set K which includes all the programs.  In  this case we can 
prove the existence of  a compact  set K such that for every sequence not  included 
in it there is a sequence in K which overtakes the former. 

Thus  f rom the optimality point  of view we can confine ourselves to consider 
only  sequences in K. 

Theorem 8.1. Let  v : R n × R" --) R: be a lower semicontinuous function such that 

v ( x ,  y )  ~ oo as lxl  + lyl ~ ~ .  (8.1) 

Given a compact set C c R ' ,  there is a ball B such that for  every sequence { z i} i~  o 
not included in B, with z o ~ C, there exists a sequence {s~}i~=0 c B with s o = z o 
such that 

N N 

~ ,  v ( s i , s ~ + : )  < Y'~ v ( z i , z i + a )  fo ra l l l a rge  N. (8.2) 
i = 0  i = 0  

To  prove the theorem we shall need the following: 

Proposition 8.2. For a compact C c R"  there are a ball B o D C and an integer N O 
such that f o r  every sequence (zi}~= 0 which contains N O consecutive members not 
belonging to B o there is a sequence ( s  i }i~=o c B o so that (8.2) holds. 

Proof. Let  t ~ C and /3 = v( t ,  t) .  Choose B 0 a ball large enough so that B o D C 
and ( x ,  y )  ~ B o × B o ~ v ( x , y )  >~/3 + 1. Denote  a = max v ( x ,  y ) ,  and 

(x,y)~Bo×Bo 
choose  N o =  [ 2 ( a - f l ) ] + l  (here [x] is the integer par t  of x). N o w  if {zi}i~ o 
satisfies Zp+ i ~ B o for 1 ~ i ~ N o for some p, then there are two possibilities: 
Either Zp+ i ~ B o for all i >11, or there is a first integer l so that Zp+ l ~ B o. In  the 
first possibil i ty the costs for large N grows at least as (/3 + 1)N so the sequence 
(si} for  which s~ = t, i>~ p will satisfy (8.2). In  the second possibility we have: 
Zp ~ B o, Zp+i q~ Bo for l ~ < i ~ < l - 1 ,  Zp+ t ~ B o and l > N  o . Therefore 
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p + l  1 

v ( z i ,  zi+ l )  > l ( f l  + 1 ) .  D e f i n e  
i = p  

t p < k < p + l  
S k 

z k k ~ p  o r k > p + l  

then 
p+l - -1  

E 
k = p  

V(Sk,Sk+I)  <~ 2 a + ( l - - 2 ) f i  < l ( f i+ l )  

and (8.2) holds. [] 

Proof  of  the Theorem. Let B 0, N o be as asserted in Proposition 8.2. For each 
2 ~< k ~< N o there exists by (8.1) a ball B k such that{ Zo, z 1 . . . . .  z k } q£ B k implies 

k - 1  

Y'~ v ( z i , z i + a )  > 21a I + ( N 0 - Z ) l f l l .  
i = 0  

Any section of sequence of k + 1 members { zp, zp + 1 ..... zp + k } such that zp ~ Bo, 
zp+ k ~ B o, {zp,  zp+ 1 ..... Ze+k} ~ B k can be ,replaced by {zp, t . . . .  , t  o Zp+k} and 

ts~:iTfni~e~Sgh t ~  c;s~sNior w~l~slar:: d ;cSi~ De~)~ei: ;BOa~l k w~__ zhiB~)is A:o ~ 

contained in B is not contained in B k either and can be replaced by a better one 
which is in B. The same is true regarding sections longer than N o which are not 
contained in B, as indicated in Proposition 8.2. This concludes the proof. [] 
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