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Independent Transversals

Let G be a multipartite graph with maximum degree ∆.

Independent transversal: One vertex from each part, with no
adjacencies between the vertices.

Bollobás, Erdős, Szemerédi (1975) What ratios between the
part sizes and ∆ will guarantee an independent transversal?



Past Results
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Past Results

Alon (1988) Sufficient: part sizes ≥ 2e∆.

Haxell (2001) Sufficient: part sizes ≥ 2∆.

Jin (1992); Yuster (1997); Szabó, Tardos (2005) 2∆ is tight.

3.2 Partitioned graphs without independent transversals

Let n, d, k ≥ 1 be integers such that d ≥ kn/(2k − 1). In this section we construct a graph Gk,n,d of

maximum degree at most d, together with a vertex set partition into 2k disjoint subsets V1, . . . , V2k

of size |Vi| = n, i = 1, . . . , 2k, such that there exists no independent transversal with respect to this

partition, i.e., every subset T ⊆ V (G) with the property |T ∩ Vi| = 1, i = 1, . . . , 2k, spans at least

one edge.

Construction 3.3

If n ≤ d, then Gk,n,d could be chosen to be the disjoint union of k ≥ 1 complete bipartite graphs

Kn,n, the bipartite classes forming the vertex partition into 2k parts.

Thus we can assume d < n and by our condition n ≤ 2d− d
k < 2d. Let i = 2d−n, q = d d−i

i e and

r = d − qi. We have 1 ≤ r ≤ i ≤ d − 1 and 1 ≤ q ≤ k − 1.

The graph Gk,n,d is the disjoint union of 2q + 1 complete bipartite graphs Hi with vertex sets

Ai ∪ Bi, i = 1, . . . , 2q + 1 and an independent set W of 2(k − q − 1)n points. The graph Hq+1 is

isomorphic to Kd−i+r,d−i+r and all other graphs Hi are isomorphic to Kd,d.

The partition classes are defined as follows. For i = 1, . . . q, Vi = Ai ∪ B′
i+1, where B′

j ⊆ Bj is

an arbitrary (d − i)-element subset of Bj. Symmetrically, for i = 1, . . . q, Vq+1+i = Bq+1+i ∪ A′
q+i,

where A′
j ⊆ Aj is an arbitrary (d − i)-element subset of Aj . The leftover elements are divided into

two classes: Vq+1 = B1 ∪ (∪q+1
j=2(Bj \ B′

j)) and V2q+2 = A2q+1 ∪ (∪2q
j=q+1(Aj \ A′

j)). This way all the

classes are of size 2d − i = n. In case q < k − 1, then W 6= ∅ and we create the required 2k classes

by arbitrarily partitioning the independent set W .

V1 V2 V4 V5

V3

V6

B4 B5B3B2B1

A1 A2 A3 A4 A5

Figure 1: The partitioned graph G3,5,3

Suppose for a contradiction that there exists an independent transversal T of Gk,n,d. If T ∩Bi 6= ∅

for some index i ≤ q, then T ∩ Ai = ∅ because T is independent. Therefore T ∩ Bi+1 6= ∅ as well,

since T is a transversal. Thus, eventually, T ∩ Bq+1 6= ∅, since Vq+1 ⊆ ∪q+1
j=1Bj ensures that there is

at least one index i ≤ q + 1 with T ∩ Bi 6= ∅. For symmetric reasons T ∩ Aq+1 6= ∅, which provides

the contradiction sought after. �

12

∆ = 3, part sizes 2∆− 1 = 5, and no indep. trans.



Applications

• Linear arboricity

• Strong chromatic number

• Partitioning into graphs with bounded components

• List coloring

• Cooperative colorings
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Application: list coloring

Each vertex of graph G has a list of permitted colors.
Does G have a proper coloring with respect to the lists?

∆ = max
v ,c

{

c is in v ’s color list :
# of neighbors of v with color c in their list

}

Reed (1999) Conj: lists of size ∆ + 1⇒ ∃ proper coloring.

Reed, Sudakov (2002) Lists of size (1 + o(1))∆ are sufficient.



Local degree

Let G be a multipartite graph with maximum degree ∆.

local degree = max
v ,i

{

# of nbrs of v in i th part
}

local degree = 1

local degree = ∆
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Cooperative colorings

Family of graphs with max. degree ∆, sharing same vertex set.
Color the vertex set with one independent set from each graph.

Q: What number of graphs will guarantee this is possible?
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Family of graphs with max. degree ∆, sharing same vertex set.
Color the vertex set with one independent set from each graph.

Q: What number of graphs will guarantee this is possible?

=⇒

Vertex set:

independent transversal ←→ cooperative coloring
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Cooperative colorings

Aharoni, Berger, Holzman, Kfir (2005)
If there is no path of length ≤ 4 between a
pair of vertices in the same part, then parts
of size (1 + o(1))∆ are sufficient.

Corollary: (1 + o(1))∆ graphs are
enough to ensure that a coopera-
tive coloring exists.

ABHK Conjecture: If the local degree is 1, then parts of size
(1 + o(1))∆ guarantee an independent transversal.
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New results

L., Sudakov (2005) Let G be a multipartite graph with maximum
degree ∆, local degree o(∆), and all parts of size (1 + o(1))∆.
Then G has an independent transversal.

Ks-free transversal: One vertex from each part, with no subset
inducing a Ks.

K3-free transversal Transversal containing K3.

Our main result is for Ks-free transversals with s = 2.
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New results

Ks-free transversals: Let G be a multipartite graph with
maximum degree ∆, local degree o(∆), and all parts of size
(1 + o(1)) ∆

s−1 . Then G has a Ks-free transversal.

Construction to establish asymptotic tightness:

No Ks-free transversal

• ∆ + 1 parts, each of size
⌊

∆
s−1

⌋

.

• Each level is a clique.

• To be Ks-free, a transversal can
only take ≤ s − 1 vertices from
each level.

• But it needs 1 from each part.



Probabilistic tools
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Talagrand’s Inequality

• Probability space Ω =
∏n

i=1 Ωi .

• Random variable X : Ω→ R.

• c-Lipschitz: If ω, ω′ ∈ Ω differ only in 1 coordinate, then
|X (ω)− X (ω′)| ≤ c.

• Certifiable: For any s and ω with X (ω) ≥ s, ∃I ⊂ {1, . . . , n},
|I| ≤ s, such that all ω′ that agree with ω on coordinates in I
have X (ω′) ≥ s as well.

Then for t �
√

E [X ],

P [|X − E [X ] | > t ] < 4e
−

t2

9c2E[X ] .



Lovász Local Lemma

• Family of events {Bi}
N
1 .

• Unlikely: all P [Bi ] ≤ p.

• Mostly independent: each Bi is mutually independent of all
but ≤ d other events.

Then:

ep(d + 1) ≤ 1 =⇒ P [none of Bi occur] > 0.
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Parts of size 2e∆ are enough

Alon (1988) Let G be a multipartite graph with maximum
degree ∆ and all parts of size 2e∆. Then G has an
independent transversal.

Proof via Local Lemma:

• Randomly select 1 vertex from each part.

• For each edge w , let Bw be when both endpoints are
selected.

• p = P [Bw ] =
( 1

2e∆

)2
.

• Dependency d ≤ 2(2e∆)∆− 2.

• ep(d + 1) < 1, so there is a case when none of Bw occur.

�



Proof of second result

Ks-free transversals: Let G be a multipartite graph with
maximum degree ∆, local degree o(∆), and all parts of size
(1 + o(1)) ∆

s−1 . Then G has a Ks-free transversal.



Proof of second result

Ks-free transversals: Let G be a multipartite graph with
maximum degree ∆, local degree o(∆), and all parts of size
(1 + o(1)) ∆

s−1 . Then G has a Ks-free transversal.
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• Delete all edges whose endpoints are different colors.

• The new maximum degree is
⌊

∆
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⌋

, so our main theorem
applies.



Proof of second result

Ks-free transversals: Let G be a multipartite graph with
maximum degree ∆, local degree o(∆), and all parts of size
(1 + o(1)) ∆

s−1 . Then G has a Ks-free transversal.

Proof using our main theorem:

• Color the vertices of G with s − 1 colors, minimizing
monochromatic edges.

• Delete all edges whose endpoints are different colors.

• The new maximum degree is
⌊

∆
s−1

⌋

, so our main theorem
applies.

• An indep. trans. here is an (s − 1)-colorable subgraph of
the original graph, so it is a Ks-free transversal there.
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Proof of main theorem

L., Sudakov (2005) Let G be a multipartite graph with maximum
degree ∆, local degree o(∆), and all parts of size (1 + o(1))∆.
Then G has an independent transversal.

Steps:

• Reduce to the case when local degree is less than 10.

Lemma: Given the above setup, there exists an induced
subgraph G′ of G with maximum degree ∆′, local degree
≤ 10, and parts of size (1 + o(1))∆′, with respect to the
same partition.

• Use the “Rödl Nibble” to solve that final case.
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multipartite graph G with maximum degree ∆, local degree 1,
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3. Delete all neighbors of
selected vertices.

4. Add the remaining selected
vertices to the indep. trans.,
and delete their entire parts.
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Main idea

Let st (i) = size of part i at start of iteration t .
Let dt(v) = degree of v at start of iteration t .

Claim: Let T = 10
ε

log ∆. Then for all t ≤ T and all i and v, we
can arrange to have:

st (i) ≥ St , dt(v) ≤ Dt ,
ST

DT
≥ 2e.
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Main idea

Let st (i) = size of part i at start of iteration t .
Let dt(v) = degree of v at start of iteration t .

Claim: Let T = 10
ε

log ∆. Then for all t ≤ T and all i and v, we
can arrange to have:

st (i) ≥ St , dt(v) ≤ Dt ,
ST

DT
≥ 2e.

S1 = (1 + ε)∆, St+1 ≈ St

(

1− 1
1+ε

1
log ∆

)

D1 = ∆, Dt+1 ≈ Dt

(

1− 1
log ∆

)

Alon (1988) Let G be a multipartite graph with maximum
degree ∆ and all parts of size 2e∆. Then G has an
independent transversal.
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and all degrees are ≤ Dt .



Induction strategy

Property P(t): At the start of iteration t , all part sizes are ≥ St

and all degrees are ≤ Dt .

To show that P(t)⇒ P(t + 1) for t < T :

• Let Ai be the event that st+1(i) < St+1.

• Let Bv be the event that dt+1(v) > Dt+1.

• Vertices that are far apart give independent events, so the
dependency d ≤ O(∆100).

• Local Lemma:
ep(d + 1) ≤ 1 =⇒ P [none of Ai , Bv occur] > 0.

Suffices to show that P [Ai ], P [Bv ] are exponentially small.



On average, parts remain large enough . . .

Goal: With very high probability, the size of the i th part is ≥ St+1

at the end of iteration t, given P(t).

St+1 ≈ St

(

1−
1

1 + ε

1
log ∆

)
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On average, parts remain large enough . . .

Goal: With very high probability, the size of the i th part is ≥ St+1

at the end of iteration t, given P(t).

St+1 ≈ St

(

1−
1

1 + ε

1
log ∆

)

E [st+1(i)] ≥ st (i)
(

1−
1

log ∆

1
St

)Dt

≥ st (i)
(

1−
1

log ∆

Dt

St

)

≥ st (i)
(

1−
1

log ∆

1
1 + ε

)



. . . and part sizes are tightly concentrated

Define the random variable X = st (i)− st+1(i).

This is the number of vertices lost in part i due to the selection
of a neighbor.

• 1-Lipschitz: Every choice we make affects X by ≤ 1,
because the local degree is 1.

• Certifiable: For every vertex that the i th part loses, there is
one culprit.

Talagrand’s Inequality:

P

[

|X − E [X ] | >
st (i)

log2 ∆

]

< 4e
−

st (i)
2

(log4 ∆)9E[X ]
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Degrees shrink quickly enough

Recall Dt+1 ≈ Dt
(

1− 1
log ∆

)

.

Goal: Almost definitely, degree of v shrinks by a factor ≈ 1
log ∆ .

Let Z = # of parts adjacent to v that are deleted in Step 4.
(A part is adjacent to v if it contains a neighbor of v .)

Suffices to show: Almost definitely, Z ≈ dt(v)
log ∆ .

First activate parts adjacent to v .
Let X = # of activated parts adjacent to v .

• E [X ] = dt(v)
log ∆ .

• X ≈ E [X ] because it is Binomial.



Degrees shrink quickly enough

Z = # of parts adjacent to v deleted in Step 4.
X = # of activated parts adjacent to v .

Randomly select a vertex from each of the X parts above.

• Since local degree is bounded, ∃ independent set of
selected vertices of size Y ≈ X almost definitely.

• Almost definitely, every vertex in the graph is adjacent to
≤ log ∆ vertices in Y , since local degree is bounded.



Degrees shrink quickly enough

Z = # of parts adjacent to v deleted in Step 4.
X = # of activated parts adjacent to v .

Randomly select a vertex from each of the X parts above.

• Since local degree is bounded, ∃ independent set of
selected vertices of size Y ≈ X almost definitely.

• Almost definitely, every vertex in the graph is adjacent to
≤ log ∆ vertices in Y , since local degree is bounded.

Activate the remaining parts and choose a random vertex in
each. Y − Z is the number that are lost due to the selection of
a neighbor.

• This difference is (log ∆)-Lipschitz and Certifiable, so
Talagrand gives Z ≈ Y .
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Conclusion

Question: What conditions ensure that G can be partitioned
into a disjoint union of independent transversals?

Alon (1992) Parts of size C∆ are sufficient (C very large).

Haxell (2004) C = 3 is sufficient.

Szabó, Tardos (2005) C cannot be reduced below 2.

Folklore: C should be 2.

Corollary of our result + trick of Aharoni, Berger, and Ziv:
If the local degree is o(∆), then parts of size (2 + o(1))∆ are
sufficient.

L., Sudakov Conjecture: If the local degree is o(∆), then parts
of size (1 + o(1))∆ are sufficient.


