Independent transversals in locally sparse graphs

Po-Shen Loh Benny Sudakov

Mathematics Department
Princeton University

Independent Transversals

Let G be a multipartite graph with maximum degree Δ. Independent transversal: One vertex from each part, with no adjacencies between the vertices.

Bollobás, Erdős, Szemerédi (1975) What ratios between the part sizes and Δ will guarantee an independent transversal?

Past Results

Alon (1988) Sufficient: part sizes $\geq 2 e \Delta$.

Past Results

Alon (1988) Sufficient: part sizes $\geq 2 e \Delta$.
Haxell (2001) Sufficient: part sizes $\geq 2 \Delta$.

Past Results

Alon (1988) Sufficient: part sizes $\geq 2 e \Delta$. Haxell (2001) Sufficient: part sizes $\geq 2 \Delta$. Jin (1992); Yuster (1997); Szabó, Tardos (2005) 2Δ is tight.

$\Delta=3$, part sizes $2 \Delta-1=5$, and no indep. trans.

Applications

- Linear arboricity
- Strong chromatic number
- Partitioning into graphs with bounded components
- List coloring
- Cooperative colorings

Application: list coloring

Each vertex of graph G has a list of permitted colors. Does G have a proper coloring with respect to the lists?

Application: list coloring

Each vertex of graph G has a list of permitted colors. Does G have a proper coloring with respect to the lists?

Application: list coloring

Each vertex of graph G has a list of permitted colors. Does G have a proper coloring with respect to the lists?

independent transversal \longleftrightarrow proper coloring

Application: list coloring

Each vertex of graph G has a list of permitted colors. Does G have a proper coloring with respect to the lists?

$$
\Delta=\max _{v, c}\left\{\begin{array}{l}
c \text { is in } v \text { 's color list : } \\
\# \text { of neighbors of } v \text { with color } c \text { in their list }
\end{array}\right\}
$$

Reed (1999) Conj: lists of size $\Delta+1 \Rightarrow \exists$ proper coloring.

Application: list coloring

Each vertex of graph G has a list of permitted colors. Does G have a proper coloring with respect to the lists?

$$
\Delta=\max _{v, c}\left\{\begin{array}{l}
c \text { is in } v \prime s \text { color list : } \\
\# \text { of neighbors of } v \text { with color } c \text { in their list }
\end{array}\right\}
$$

Reed (1999) Conj: lists of size $\Delta+1 \Rightarrow \exists$ proper coloring.
Reed, Sudakov (2002) Lists of size $(1+o(1)) \Delta$ are sufficient.

Local degree

Let G be a multipartite graph with maximum degree Δ.

$$
\text { local degree }=\max _{v, i}\left\{\# \text { of nbrs of } v \text { in } i^{\text {th }} \text { part }\right\}
$$

$$
\text { local degree }=1
$$

local degree $=\Delta$

Cooperative colorings

Family of graphs with max. degree Δ, sharing same vertex set. Color the vertex set with one independent set from each graph.
Q: What number of graphs will guarantee this is possible?

Cooperative colorings

Family of graphs with max. degree Δ, sharing same vertex set. Color the vertex set with one independent set from each graph. Q: What number of graphs will guarantee this is possible?

Vertex set:

Cooperative colorings

Family of graphs with max. degree Δ, sharing same vertex set. Color the vertex set with one independent set from each graph. Q: What number of graphs will guarantee this is possible?

Vertex set:
independent transversal \longleftrightarrow cooperative coloring

Cooperative colorings

Aharoni, Berger, Holzman, Kfir (2005)
If there is no path of length ≤ 4 between a pair of vertices in the same part, then parts of size $(1+o(1)) \Delta$ are sufficient.

Cooperative colorings

Aharoni, Berger, Holzman, Kfir (2005)
If there is no path of length ≤ 4 between a pair of vertices in the same part, then parts of size $(1+o(1)) \Delta$ are sufficient.

Corollary: $(1+o(1)) \Delta$ graphs are enough to ensure that a cooperative coloring exists.

Cooperative colorings

Aharoni, Berger, Holzman, Kfir (2005)
If there is no path of length ≤ 4 between a pair of vertices in the same part, then parts of size $(1+o(1)) \Delta$ are sufficient.

Corollary: $(1+o(1)) \Delta$ graphs are enough to ensure that a cooperative coloring exists.

ABHK Conjecture: If the local degree is 1, then parts of size $(1+o(1)) \Delta$ guarantee an independent transversal.

New results

L., Sudakov (2005) Let G be a multipartite graph with maximum degree Δ, local degree $o(\Delta)$, and all parts of size $(1+o(1)) \Delta$. Then G has an independent transversal.

New results

L., Sudakov (2005) Let G be a multipartite graph with maximum degree Δ, local degree $o(\Delta)$, and all parts of size $(1+o(1)) \Delta$. Then G has an independent transversal.
K_{s}-free transversal: One vertex from each part, with no subset inducing a K_{s}.

K_{3}-free transversal

Transversal containing K_{3}.

Our main result is for K_{s}-free transversals with $s=2$.

New results

K_{S}-free transversals: Let G be a multipartite graph with maximum degree Δ, local degree $o(\Delta)$, and all parts of size $(1+o(1)) \frac{\Delta}{s-1}$. Then G has a K_{s}-free transversal.

New results

K_{S}-free transversals: Let G be a multipartite graph with maximum degree Δ, local degree $o(\Delta)$, and all parts of size $(1+o(1)) \frac{\Delta}{s-1}$. Then G has a K_{s}-free transversal.

Construction to establish asymptotic tightness:

- $\Delta+1$ parts, each of size $\left\lfloor\frac{\Delta}{s-1}\right\rfloor$.
- Each level is a clique.

No K_{s}-free transversal

New results

K_{S}-free transversals: Let G be a multipartite graph with maximum degree Δ, local degree $o(\Delta)$, and all parts of size $(1+o(1)) \frac{\Delta}{s-1}$. Then G has a K_{s}-free transversal.

Construction to establish asymptotic tightness:

No K_{s}-free transversal

- $\Delta+1$ parts, each of size $\left\lfloor\frac{\Delta}{s-1}\right\rfloor$.
- Each level is a clique.
- To be K_{s}-free, a transversal can only take $\leq s-1$ vertices from each level.
- But it needs 1 from each part.

Probabilistic tools

Talagrand's Inequality

- Probability space $\Omega=\prod_{i=1}^{n} \Omega_{j}$.
- Random variable $X: \Omega \rightarrow \mathbb{R}$.

Talagrand's Inequality

- Probability space $\Omega=\prod_{i=1}^{n} \Omega_{j}$.
- Random variable $X: \Omega \rightarrow \mathbb{R}$.
- c-Lipschitz: If $\omega, \omega^{\prime} \in \Omega$ differ only in 1 coordinate, then $\left|X(\omega)-X\left(\omega^{\prime}\right)\right| \leq c$.

Talagrand's Inequality

- Probability space $\Omega=\prod_{i=1}^{n} \Omega_{i}$.
- Random variable $X: \Omega \rightarrow \mathbb{R}$.
- c-Lipschitz: If $\omega, \omega^{\prime} \in \Omega$ differ only in 1 coordinate, then $\left|X(\omega)-X\left(\omega^{\prime}\right)\right| \leq c$.
- Certifiable: For any s and ω with $X(\omega) \geq s, \exists I \subset\{1, \ldots, n\}$, $|I| \leq s$, such that all ω^{\prime} that agree with ω on coordinates in I have $X\left(\omega^{\prime}\right) \geq s$ as well.

Talagrand's Inequality

- Probability space $\Omega=\prod_{i=1}^{n} \Omega_{i}$.
- Random variable $X: \Omega \rightarrow \mathbb{R}$.
- c-Lipschitz: If $\omega, \omega^{\prime} \in \Omega$ differ only in 1 coordinate, then $\left|X(\omega)-X\left(\omega^{\prime}\right)\right| \leq c$.
- Certifiable: For any s and ω with $X(\omega) \geq s, \exists l \subset\{1, \ldots, n\}$, $|I| \leq s$, such that all ω^{\prime} that agree with ω on coordinates in I have $X\left(\omega^{\prime}\right) \geq s$ as well.

Then for $t \gg \sqrt{\mathbb{E}[X]}$,

$$
\mathbb{P}[|X-\mathbb{E}[X]|>t]<4 e^{-\frac{t^{2}}{9 c^{2} \mathbb{E}[X]}}
$$

Lovász Local Lemma

- Family of events $\left\{B_{i}\right\}_{1}^{N}$.
- Unlikely: all $\mathbb{P}\left[B_{i}\right] \leq p$.
- Mostly independent: each B_{i} is mutually independent of all but $\leq d$ other events.

Then:

$$
e p(d+1) \leq 1 \quad \Longrightarrow \quad \mathbb{P}\left[\text { none of } B_{i} \text { occur] }>0\right.
$$

Parts of size $2 e \Delta$ are enough

Alon (1988) Let G be a multipartite graph with maximum degree Δ and all parts of size $2 e \Delta$. Then G has an independent transversal.

Parts of size $2 e \Delta$ are enough

Alon (1988) Let G be a multipartite graph with maximum degree Δ and all parts of size $2 e \Delta$. Then G has an independent transversal.
Proof via Local Lemma:

- Randomly select 1 vertex from each part.
- For each edge w, let B_{w} be when both endpoints are selected.

Parts of size $2 e \Delta$ are enough

Alon (1988) Let G be a multipartite graph with maximum degree Δ and all parts of size $2 e \Delta$. Then G has an independent transversal.
Proof via Local Lemma:

- Randomly select 1 vertex from each part.
- For each edge w, let B_{w} be when both endpoints are selected.
- $p=\mathbb{P}\left[B_{w}\right]=\left(\frac{1}{2 e \Delta}\right)^{2}$.

Parts of size $2 e \Delta$ are enough

Alon (1988) Let G be a multipartite graph with maximum degree Δ and all parts of size $2 e \Delta$. Then G has an independent transversal.
Proof via Local Lemma:

- Randomly select 1 vertex from each part.
- For each edge w, let B_{w} be when both endpoints are selected.
- $p=\mathbb{P}\left[B_{w}\right]=\left(\frac{1}{2 e \Delta}\right)^{2}$.
- Dependency $d \leq 2(2 e \Delta) \Delta-2$.

Parts of size $2 e \Delta$ are enough

Alon (1988) Let G be a multipartite graph with maximum degree Δ and all parts of size $2 e \Delta$. Then G has an independent transversal.
Proof via Local Lemma:

- Randomly select 1 vertex from each part.
- For each edge w, let B_{w} be when both endpoints are selected.
- $p=\mathbb{P}\left[B_{w}\right]=\left(\frac{1}{2 e \Delta}\right)^{2}$.
- Dependency $d \leq 2(2 e \Delta) \Delta-2$.
- ep $(d+1)<1$, so there is a case when none of B_{w} occur.

Proof of second result

K_{s}-free transversals: Let G be a multipartite graph with maximum degree Δ, local degree $o(\Delta)$, and all parts of size $(1+o(1)) \frac{\Delta}{s-1}$. Then G has a K_{s}-free transversal.

Proof of second result

K_{s}-free transversals: Let G be a multipartite graph with maximum degree Δ, local degree $o(\Delta)$, and all parts of size $(1+o(1)) \frac{\Delta}{s-1}$. Then G has a K_{s}-free transversal.

Proof using our main theorem:

- Color the vertices of G with $s-1$ colors, minimizing monochromatic edges.
- Delete all edges whose endpoints are different colors.
- The new maximum degree is $\left\lfloor\frac{\Delta}{s-1}\right\rfloor$, so our main theorem applies.

Proof of second result

K_{s}-free transversals: Let G be a multipartite graph with maximum degree Δ, local degree $o(\Delta)$, and all parts of size $(1+o(1)) \frac{\Delta}{s-1}$. Then G has a K_{s}-free transversal.

Proof using our main theorem:

- Color the vertices of G with $s-1$ colors, minimizing monochromatic edges.
- Delete all edges whose endpoints are different colors.
- The new maximum degree is $\left\lfloor\frac{\Delta}{s-1}\right\rfloor$, so our main theorem applies.
- An indep. trans. here is an $(s-1)$-colorable subgraph of the original graph, so it is a K_{s}-free transversal there.

Proof of main theorem

L., Sudakov (2005) Let G be a multipartite graph with maximum degree Δ, local degree $o(\Delta)$, and all parts of size $(1+o(1)) \Delta$. Then G has an independent transversal.

Proof of main theorem

L., Sudakov (2005) Let G be a multipartite graph with maximum degree Δ, local degree $o(\Delta)$, and all parts of size $(1+o(1)) \Delta$. Then G has an independent transversal.

Steps:

- Reduce to the case when local degree is less than 10.
- Use the "Rödl Nibble" to solve that final case.

Proof of main theorem

L., Sudakov (2005) Let G be a multipartite graph with maximum degree Δ, local degree $o(\Delta)$, and all parts of size $(1+o(1)) \Delta$. Then G has an independent transversal.

Steps:

- Reduce to the case when local degree is less than 10.

Lemma: Given the above setup, there exists an induced subgraph G^{\prime} of G with maximum degree Δ^{\prime}, local degree ≤ 10, and parts of size $(1+o(1)) \Delta^{\prime}$, with respect to the same partition.

- Use the "Rödl Nibble" to solve that final case.

Proof of main theorem

Remains to show: Fix $\epsilon>0$. For sufficiently large Δ, every multipartite graph G with maximum degree Δ, local degree 1, and parts of size $(1+\epsilon) \Delta$ has an independent transversal.

Proof of main theorem

Remains to show: Fix $\epsilon>0$. For sufficiently large Δ, every multipartite graph G with maximum degree Δ, local degree 1, and parts of size $(1+\epsilon) \Delta$ has an independent transversal. Algorithm (one iteration):

1. Activate each part w.p. $\frac{1}{\log \Delta}$.

2. Independently select a random vertex in each activated part.
3. Delete all neighbors of selected vertices.
4. Add the remaining selected vertices to the indep. trans., and delete their entire parts.

Proof of main theorem

Remains to show: Fix $\epsilon>0$. For sufficiently large Δ, every multipartite graph G with maximum degree Δ, local degree 1, and parts of size $(1+\epsilon) \Delta$ has an independent transversal. Algorithm (one iteration):

1. Activate each part w.p. $\frac{1}{\log \Delta}$.

2. Independently select a random vertex in each activated part.
3. Delete all neighbors of selected vertices.
4. Add the remaining selected vertices to the indep. trans., and delete their entire parts.

Proof of main theorem

Remains to show: Fix $\epsilon>0$. For sufficiently large Δ, every multipartite graph G with maximum degree Δ, local degree 1 , and parts of size $(1+\epsilon) \Delta$ has an independent transversal. Algorithm (one iteration):

1. Activate each part w.p. $\frac{1}{\log \Delta}$.

2. Independently select a random vertex in each activated part.
3. Delete all neighbors of selected vertices.
4. Add the remaining selected vertices to the indep. trans., and delete their entire parts.

Proof of main theorem

Remains to show: Fix $\epsilon>0$. For sufficiently large Δ, every multipartite graph G with maximum degree Δ, local degree 1, and parts of size $(1+\epsilon) \Delta$ has an independent transversal. Algorithm (one iteration):

1. Activate each part w.p. $\frac{1}{\log \Delta}$.

2. Independently select a random vertex in each activated part.
3. Delete all neighbors of selected vertices.
4. Add the remaining selected vertices to the indep. trans., and delete their entire parts.

Proof of main theorem

Remains to show: Fix $\epsilon>0$. For sufficiently large Δ, every multipartite graph G with maximum degree Δ, local degree 1, and parts of size $(1+\epsilon) \Delta$ has an independent transversal. Algorithm (one iteration):

1. Activate each part w.p. $\frac{1}{\log \Delta}$.

2. Independently select a random vertex in each activated part.
3. Delete all neighbors of selected vertices.
4. Add the remaining selected vertices to the indep. trans., and delete their entire parts.

Main idea

Let $s_{t}(i)=$ size of part i at start of iteration t.
Let $d_{t}(v)=$ degree of v at start of iteration t.
Claim: Let $T=\frac{10}{\epsilon} \log \Delta$. Then for all $t \leq T$ and all i and v, we can arrange to have:

$$
s_{t}(i) \geq S_{t}, \quad d_{t}(v) \leq D_{t}, \quad \frac{S_{T}}{D_{T}} \geq 2 e .
$$

Main idea

Let $s_{t}(i)=$ size of part i at start of iteration t. Let $d_{t}(v)=$ degree of v at start of iteration t.
Claim: Let $T=\frac{10}{\epsilon} \log \Delta$. Then for all $t \leq T$ and all i and v, we can arrange to have:

$$
s_{t}(i) \geq S_{t}, \quad d_{t}(v) \leq D_{t}, \quad \frac{S_{T}}{D_{T}} \geq 2 e .
$$

Alon (1988) Let G be a multipartite graph with maximum degree Δ and all parts of size $2 e \Delta$. Then G has an independent transversal.

Main idea

Let $s_{t}(i)=$ size of part i at start of iteration t. Let $d_{t}(v)=$ degree of v at start of iteration t.
Claim: Let $T=\frac{10}{\epsilon} \log \Delta$. Then for all $t \leq T$ and all i and v, we can arrange to have:

$$
\begin{array}{ll}
s_{t}(i) \geq S_{t}, & d_{t}(v) \leq D_{t}, \quad \frac{S_{T}}{D_{T}} \geq 2 e . \\
S_{1}=(1+\epsilon) \Delta, & S_{t+1} \approx S_{t}\left(1-\frac{1}{1+\epsilon} \frac{1}{\log \Delta}\right) \\
D_{1}=\Delta, & D_{t+1} \approx D_{t}\left(1-\frac{1}{\log \Delta}\right)
\end{array}
$$

Alon (1988) Let G be a multipartite graph with maximum degree Δ and all parts of size $2 e \Delta$. Then G has an independent transversal.

Induction strategy

Property $P(t)$: At the start of iteration t, all part sizes are $\geq S_{t}$ and all degrees are $\leq D_{t}$.

Induction strategy

Property $P(t)$: At the start of iteration t, all part sizes are $\geq S_{t}$ and all degrees are $\leq D_{t}$.

To show that $P(t) \Rightarrow P(t+1)$ for $t<T$:

- Let A_{i} be the event that $s_{t+1}(i)<S_{t+1}$.
- Let B_{v} be the event that $d_{t+1}(v)>D_{t+1}$.
- Vertices that are far apart give independent events, so the dependency $d \leq O\left(\Delta^{100}\right)$.
- Local Lemma:

$$
e p(d+1) \leq 1 \Longrightarrow \mathbb{P}\left[\text { none of } A_{i}, B_{v} \text { occur }\right]>0 .
$$

Suffices to show that $\mathbb{P}\left[A_{i}\right], \mathbb{P}\left[B_{v}\right]$ are exponentially small.

On average, parts remain large enough ...

Goal: With very high probability, the size of the $i^{\text {th }}$ part is $\geq S_{t+1}$ at the end of iteration t, given $P(t)$.

$$
S_{t+1} \approx S_{t}\left(1-\frac{1}{1+\epsilon} \frac{1}{\log \Delta}\right)
$$

On average, parts remain large enough ...

Goal: With very high probability, the size of the $i^{\text {th }}$ part is $\geq S_{t+1}$ at the end of iteration t, given $P(t)$.

$$
S_{t+1} \approx S_{t}\left(1-\frac{1}{1+\epsilon} \frac{1}{\log \Delta}\right)
$$

$$
\mathbb{E}\left[s_{t+1}(i)\right] \geq s_{t}(i)\left(1-\frac{1}{\log \Delta} \frac{1}{S_{t}}\right)^{D_{t}}
$$

On average, parts remain large enough ...

Goal: With very high probability, the size of the $i^{\text {th }}$ part is $\geq S_{t+1}$ at the end of iteration t, given $P(t)$.

$$
S_{t+1} \approx S_{t}\left(1-\frac{1}{1+\epsilon} \frac{1}{\log \Delta}\right)
$$

$$
\begin{aligned}
\mathbb{E}\left[s_{t+1}(i)\right] & \geq s_{t}(i)\left(1-\frac{1}{\log \Delta} \frac{1}{s_{t}}\right)^{D_{t}} \\
& \geq s_{t}(i)\left(1-\frac{1}{\log \Delta} \frac{D_{t}}{s_{t}}\right) \\
& \geq s_{t}(i)\left(1-\frac{1}{\log \Delta} \frac{1}{1+\epsilon}\right)
\end{aligned}
$$

... and part sizes are tightly concentrated

Define the random variable $X=s_{t}(i)-s_{t+1}(i)$.
This is the number of vertices lost in part i due to the selection of a neighbor.

- 1-Lipschitz: Every choice we make affects X by ≤ 1, because the local degree is 1 .
- Certifiable: For every vertex that the $i^{\text {th }}$ part loses, there is one culprit.

Talagrand's Inequality:

$$
\mathbb{P}\left[|X-\mathbb{E}[X]|>\frac{s_{t}(i)}{\log ^{2} \Delta}\right]<4 e^{-\frac{s_{t}(i)^{2}}{\left(\log ^{4} \Delta\right) 9 \mathbb{E}[X]}}
$$

Degrees shrink quickly enough

Recall $D_{t+1} \approx D_{t}\left(1-\frac{1}{\log \Delta}\right)$.
Goal: Almost definitely, degree of v shrinks by a factor $\approx \frac{1}{\log \Delta}$.

Degrees shrink quickly enough

Recall $D_{t+1} \approx D_{t}\left(1-\frac{1}{\log \Delta}\right)$.
Goal: Almost definitely, degree of v shrinks by a factor $\approx \frac{1}{\log \Delta}$.
Let $Z=\#$ of parts adjacent to v that are deleted in Step 4.
(A part is adjacent to v if it contains a neighbor of v.)
Suffices to show: Almost definitely, $Z \approx \frac{d_{t}(v)}{\log \Delta}$.

Degrees shrink quickly enough

Recall $D_{t+1} \approx D_{t}\left(1-\frac{1}{\log \Delta}\right)$.
Goal: Almost definitely, degree of v shrinks by a factor $\approx \frac{1}{\log \Delta}$.
Let $Z=\#$ of parts adjacent to v that are deleted in Step 4.
(A part is adjacent to v if it contains a neighbor of v.)
Suffices to show: Almost definitely, $Z \approx \frac{d_{t}(v)}{\log \Delta}$.
First activate parts adjacent to v.
Let $X=\#$ of activated parts adjacent to v.

- $\mathbb{E}[X]=\frac{d_{t}(v)}{\log \Delta}$.
- $X \approx \mathbb{E}[X]$ because it is Binomial.

Degrees shrink quickly enough

$Z=\#$ of parts adjacent to v deleted in Step 4.
$X=\#$ of activated parts adjacent to v.
Randomly select a vertex from each of the X parts above.

- Since local degree is bounded, \exists independent set of selected vertices of size $Y \approx X$ almost definitely.
- Almost definitely, every vertex in the graph is adjacent to $\leq \log \Delta$ vertices in Y, since local degree is bounded.

Degrees shrink quickly enough

$Z=\#$ of parts adjacent to v deleted in Step 4.
$X=\#$ of activated parts adjacent to v.
Randomly select a vertex from each of the X parts above.

- Since local degree is bounded, \exists independent set of selected vertices of size $Y \approx X$ almost definitely.
- Almost definitely, every vertex in the graph is adjacent to $\leq \log \Delta$ vertices in Y, since local degree is bounded.

Activate the remaining parts and choose a random vertex in each. $Y-Z$ is the number that are lost due to the selection of a neighbor.

- This difference is $(\log \Delta)$-Lipschitz and Certifiable, so Talagrand gives $Z \approx Y$.

Conclusion

Question: What conditions ensure that G can be partitioned into a disjoint union of independent transversals?

Conclusion

Question: What conditions ensure that G can be partitioned into a disjoint union of independent transversals?

Alon (1992) Parts of size CD are sufficient (C very large).
Haxell (2004) C = 3 is sufficient.
Szabó, Tardos (2005) C cannot be reduced below 2.
Folklore: C should be 2.

Conclusion

Question: What conditions ensure that G can be partitioned into a disjoint union of independent transversals?

Alon (1992) Parts of size CD are sufficient (C very large). Haxell (2004) C $=3$ is sufficient.
Szabó, Tardos (2005) C cannot be reduced below 2.
Folklore: C should be 2.
Corollary of our result + trick of Aharoni, Berger, and Ziv: If the local degree is $o(\Delta)$, then parts of size $(2+o(1)) \Delta$ are sufficient.
L., Sudakov Conjecture: If the local degree is o(Δ), then parts of size $(1+o(1)) \Delta$ are sufficient.

