Independent transversals in locally sparse graphs

Po-Shen Loh Benny Sudakov

Mathematics Department Princeton University

Independent Transversals

Let *G* be a multipartite graph with maximum degree Δ .

Independent transversal: One vertex from each part, with no adjacencies between the vertices.

Bollobás, Erdős, Szemerédi (1975) What ratios between the part sizes and Δ will guarantee an independent transversal?

Past Results

Alon (1988) Sufficient: part sizes $\geq 2e\Delta$.

Past Results

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Alon (1988) Sufficient: part sizes $\geq 2e\Delta$. Haxell (2001) Sufficient: part sizes $\geq 2\Delta$.

Past Results

Alon (1988) Sufficient: part sizes $\geq 2e\Delta$. Haxell (2001) Sufficient: part sizes $\geq 2\Delta$. Jin (1992); Yuster (1997); Szabó, Tardos (2005) 2Δ is tight.

 $\Delta = 3$, part sizes $2\Delta - 1 = 5$, and no indep. trans.

Applications

- Linear arboricity
- Strong chromatic number
- Partitioning into graphs with bounded components

- List coloring
- Cooperative colorings

Each vertex of graph G has a list of permitted colors. Does G have a proper coloring with respect to the lists?

Each vertex of graph G has a list of permitted colors. Does G have a proper coloring with respect to the lists?

・ロト ・ 四ト ・ ヨト ・ ヨト

Each vertex of graph G has a list of permitted colors. Does G have a proper coloring with respect to the lists?

independent transversal \longleftrightarrow proper coloring

Each vertex of graph G has a list of permitted colors. Does G have a proper coloring with respect to the lists?

 $\Delta = \max_{v,c} \left\{ \begin{array}{l} c \text{ is in } v \text{'s color list} : \\ \# \text{ of neighbors of } v \text{ with color } c \text{ in their list} \end{array} \right\}$ Reed (1999) *Conj: lists of size* $\Delta + 1 \Rightarrow \exists \text{ proper coloring.}$

Each vertex of graph *G* has a list of permitted colors. Does *G* have a proper coloring with respect to the lists?

 $\Delta = \max_{v,c} \left\{ \begin{array}{l} c \text{ is in } v \text{'s color list } : \\ \# \text{ of neighbors of } v \text{ with color } c \text{ in their list} \end{array} \right\}$ Reed (1999) *Conj: lists of size* $\Delta + 1 \Rightarrow \exists \text{ proper coloring.}$ Reed, Sudakov (2002) *Lists of size* $(1 + o(1))\Delta$ are sufficient.

Local degree

Let *G* be a multipartite graph with maximum degree Δ .

local degree =
$$\max_{v,i} \left\{ \# \text{ of nbrs of } v \text{ in } i^{\text{th}} \text{ part} \right\}$$

local degree = 1

local degree = Δ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Family of graphs with max. degree Δ , sharing same vertex set. Color the vertex set with one independent set from each graph.

Q: What number of graphs will guarantee this is possible?

Family of graphs with max. degree Δ , sharing same vertex set. Color the vertex set with one independent set from each graph.

Q: What number of graphs will guarantee this is possible?

Family of graphs with max. degree Δ , sharing same vertex set. Color the vertex set with one independent set from each graph.

Q: What number of graphs will guarantee this is possible?

independent transversal \longleftrightarrow cooperative coloring

Aharoni, Berger, Holzman, Kfir (2005) If there is no path of length \leq 4 between a pair of vertices in the same part, then parts of size $(1 + o(1))\Delta$ are sufficient.

Aharoni, Berger, Holzman, Kfir (2005) If there is no path of length \leq 4 between a pair of vertices in the same part, then parts of size $(1 + o(1))\Delta$ are sufficient.

Corollary: $(1 + o(1))\Delta$ graphs are enough to ensure that a cooperative coloring exists.

・ロト・日本・山田・ 山田・ 山口・

Aharoni, Berger, Holzman, Kfir (2005) If there is no path of length \leq 4 between a pair of vertices in the same part, then parts of size $(1 + o(1))\Delta$ are sufficient.

Corollary: $(1 + o(1))\Delta$ graphs are enough to ensure that a cooperative coloring exists.

ABHK Conjecture: If the local degree is 1, then parts of size $(1 + o(1))\Delta$ guarantee an independent transversal.

L., Sudakov (2005) Let G be a multipartite graph with maximum degree Δ , local degree $o(\Delta)$, and all parts of size $(1 + o(1))\Delta$. Then G has an independent transversal.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

L., Sudakov (2005) Let G be a multipartite graph with maximum degree Δ , local degree $o(\Delta)$, and all parts of size $(1 + o(1))\Delta$. Then G has an independent transversal.

 K_s -free transversal: One vertex from each part, with no subset inducing a K_s .

Our main result is for K_s -free transversals with s = 2.

*K*_s-free transversals: Let *G* be a multipartite graph with maximum degree Δ , local degree $o(\Delta)$, and all parts of size $(1 + o(1))\frac{\Delta}{s-1}$. Then *G* has a *K*_s-free transversal.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

*K*_s-free transversals: Let *G* be a multipartite graph with maximum degree Δ , local degree $o(\Delta)$, and all parts of size $(1 + o(1))\frac{\Delta}{s-1}$. Then *G* has a *K*_s-free transversal.

Construction to establish asymptotic tightness:

No Ks-free transversal

• $\Delta + 1$ parts, each of size $\left| \frac{\Delta}{s-1} \right|$.

• Each level is a clique.

*K*_s-free transversals: Let *G* be a multipartite graph with maximum degree Δ , local degree $o(\Delta)$, and all parts of size $(1 + o(1))\frac{\Delta}{s-1}$. Then *G* has a *K*_s-free transversal.

Construction to establish asymptotic tightness:

No Ks-free transversal

- $\Delta + 1$ parts, each of size $\left| \frac{\Delta}{s-1} \right|$.
- Each level is a clique.
- To be K_s-free, a transversal can only take ≤ s − 1 vertices from each level.
- But it needs 1 from each part.

Probabilistic tools

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

- Probability space $\Omega = \prod_{i=1}^{n} \Omega_i$.
- Random variable $X : \Omega \to \mathbb{R}$.

- Probability space $\Omega = \prod_{i=1}^{n} \Omega_i$.
- Random variable $X : \Omega \to \mathbb{R}$.
- c-Lipschitz: If $\omega, \omega' \in \Omega$ differ only in 1 coordinate, then $|X(\omega) X(\omega')| \leq c$.

(1)
 (1)
 (1)
 (2)
 (2)
 (3)
 (4)
 (4)
 (4)
 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

 (4)

- Probability space $\Omega = \prod_{i=1}^{n} \Omega_i$.
- Random variable $X : \Omega \to \mathbb{R}$.
- c-Lipschitz: If $\omega, \omega' \in \Omega$ differ only in 1 coordinate, then $|X(\omega) X(\omega')| \leq c$.
- Certifiable: For any s and ω with X(ω) ≥ s, ∃I ⊂ {1,...,n}, |I| ≤ s, such that all ω' that agree with ω on coordinates in I have X(ω') ≥ s as well.

- Probability space $\Omega = \prod_{i=1}^{n} \Omega_i$.
- Random variable $X : \Omega \to \mathbb{R}$.
- c-Lipschitz: If $\omega, \omega' \in \Omega$ differ only in 1 coordinate, then $|X(\omega) X(\omega')| \leq c$.
- Certifiable: For any s and ω with X(ω) ≥ s, ∃I ⊂ {1,...,n}, |I| ≤ s, such that all ω' that agree with ω on coordinates in I have X(ω') ≥ s as well.

Then for $t \gg \sqrt{\mathbb{E}[X]}$,

$$\mathbb{P}\left[|X - \mathbb{E}\left[X\right]| > t\right] < 4e^{-\frac{t^2}{9c^2\mathbb{E}[X]}}$$

Lovász Local Lemma

- Family of events $\{B_i\}_1^N$.
- Unlikely: all $\mathbb{P}[B_i] \leq p$.
- Mostly independent: each B_i is mutually independent of all but ≤ d other events.

Then:

$$ep(d+1) \leq 1 \implies \mathbb{P}[\text{none of } B_i \text{ occur}] > 0.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Alon (1988) Let G be a multipartite graph with maximum degree Δ and all parts of size $2e\Delta$. Then G has an independent transversal.

Alon (1988) Let G be a multipartite graph with maximum degree Δ and all parts of size $2e\Delta$. Then G has an independent transversal.

Proof via Local Lemma:

- Randomly select 1 vertex from each part.
- For each edge *w*, let *B_w* be when both endpoints are selected.

Alon (1988) Let G be a multipartite graph with maximum degree Δ and all parts of size $2e\Delta$. Then G has an independent transversal.

Proof via Local Lemma:

- Randomly select 1 vertex from each part.
- For each edge *w*, let *B_w* be when both endpoints are selected.

•
$$\rho = \mathbb{P}[B_w] = \left(\frac{1}{2e\Delta}\right)^2$$
.

Alon (1988) Let G be a multipartite graph with maximum degree Δ and all parts of size $2e\Delta$. Then G has an independent transversal.

Proof via Local Lemma:

- Randomly select 1 vertex from each part.
- For each edge *w*, let *B_w* be when both endpoints are selected.

- $\rho = \mathbb{P}[B_w] = \left(\frac{1}{2e\Delta}\right)^2$.
- Dependency $d \leq 2(2e\Delta)\Delta 2$.

Alon (1988) Let G be a multipartite graph with maximum degree Δ and all parts of size $2e\Delta$. Then G has an independent transversal.

Proof via Local Lemma:

- Randomly select 1 vertex from each part.
- For each edge *w*, let *B_w* be when both endpoints are selected.
- $\rho = \mathbb{P}[B_w] = \left(\frac{1}{2e\Delta}\right)^2$.
- Dependency $d \leq 2(2e\Delta)\Delta 2$.
- ep(d+1) < 1, so there is a case when none of B_w occur.

(日) (日) (日) (日) (日) (日) (日)

Proof of second result

 K_{s} -free transversals: Let G be a multipartite graph with maximum degree Δ , local degree $o(\Delta)$, and all parts of size $(1 + o(1))\frac{\Delta}{s-1}$. Then G has a K_{s} -free transversal.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof of second result

 K_{s} -free transversals: Let G be a multipartite graph with maximum degree Δ , local degree $o(\Delta)$, and all parts of size $(1 + o(1))\frac{\Delta}{s-1}$. Then G has a K_{s} -free transversal.

Proof using our main theorem:

- Color the vertices of G with s 1 colors, minimizing monochromatic edges.
- Delete all edges whose endpoints are different colors.
- The new maximum degree is $\lfloor \frac{\Delta}{s-1} \rfloor$, so our main theorem applies.

Proof of second result

 K_{s} -free transversals: Let G be a multipartite graph with maximum degree Δ , local degree $o(\Delta)$, and all parts of size $(1 + o(1))\frac{\Delta}{s-1}$. Then G has a K_{s} -free transversal.

Proof using our main theorem:

- Color the vertices of G with s 1 colors, minimizing monochromatic edges.
- Delete all edges whose endpoints are different colors.
- The new maximum degree is $\lfloor \frac{\Delta}{s-1} \rfloor$, so our main theorem applies.
- An indep. trans. here is an (s 1)-colorable subgraph of the original graph, so it is a K_s-free transversal there.

L., Sudakov (2005) Let G be a multipartite graph with maximum degree Δ , local degree $o(\Delta)$, and all parts of size $(1 + o(1))\Delta$. Then G has an independent transversal.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

L., Sudakov (2005) Let G be a multipartite graph with maximum degree Δ , local degree $o(\Delta)$, and all parts of size $(1 + o(1))\Delta$. Then G has an independent transversal.

Steps:

• Reduce to the case when local degree is less than 10.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

• Use the "Rödl Nibble" to solve that final case.

L., Sudakov (2005) Let G be a multipartite graph with maximum degree Δ , local degree $o(\Delta)$, and all parts of size $(1 + o(1))\Delta$. Then G has an independent transversal.

Steps:

• Reduce to the case when local degree is less than 10.

Lemma: Given the above setup, there exists an induced subgraph G' of G with maximum degree Δ' , local degree ≤ 10 , and parts of size $(1 + o(1))\Delta'$, with respect to the same partition.

• Use the "Rödl Nibble" to solve that final case.

Remains to show: Fix $\epsilon > 0$. For sufficiently large Δ , every multipartite graph G with maximum degree Δ , local degree 1, and parts of size $(1 + \epsilon)\Delta$ has an independent transversal.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remains to show: Fix $\epsilon > 0$. For sufficiently large Δ , every multipartite graph G with maximum degree Δ , local degree 1, and parts of size $(1 + \epsilon)\Delta$ has an independent transversal.

- 1. Activate each part w.p. $\frac{1}{\log \Delta}$.
- 2. Independently select a random vertex in each activated part.
- 3. Delete all neighbors of selected vertices.
- 4. Add the remaining selected vertices to the indep. trans., and delete their entire parts.

Remains to show: Fix $\epsilon > 0$. For sufficiently large Δ , every multipartite graph G with maximum degree Δ , local degree 1, and parts of size $(1 + \epsilon)\Delta$ has an independent transversal.

- 1. Activate each part w.p. $\frac{1}{\log \Delta}$.
- 2. Independently select a random vertex in each activated part.
- 3. Delete all neighbors of selected vertices.
- 4. Add the remaining selected vertices to the indep. trans., and delete their entire parts.

Remains to show: Fix $\epsilon > 0$. For sufficiently large Δ , every multipartite graph G with maximum degree Δ , local degree 1, and parts of size $(1 + \epsilon)\Delta$ has an independent transversal.

- 1. Activate each part w.p. $\frac{1}{\log \Delta}$.
- 2. Independently select a random vertex in each activated part.
- 3. Delete all neighbors of selected vertices.
- 4. Add the remaining selected vertices to the indep. trans., and delete their entire parts.

Remains to show: Fix $\epsilon > 0$. For sufficiently large Δ , every multipartite graph G with maximum degree Δ , local degree 1, and parts of size $(1 + \epsilon)\Delta$ has an independent transversal.

- 1. Activate each part w.p. $\frac{1}{\log \Delta}$.
- 2. Independently select a random vertex in each activated part.
- 3. Delete all neighbors of selected vertices.
- 4. Add the remaining selected vertices to the indep. trans., and delete their entire parts.

Remains to show: Fix $\epsilon > 0$. For sufficiently large Δ , every multipartite graph G with maximum degree Δ , local degree 1, and parts of size $(1 + \epsilon)\Delta$ has an independent transversal.

- 1. Activate each part w.p. $\frac{1}{\log \Delta}$.
- 2. Independently select a random vertex in each activated part.
- 3. Delete all neighbors of selected vertices.
- 4. Add the remaining selected vertices to the indep. trans., and delete their entire parts.

Main idea

Let $s_t(i)$ = size of part *i* at start of iteration *t*. Let $d_t(v)$ = degree of *v* at start of iteration *t*.

Claim: Let $T = \frac{10}{\epsilon} \log \Delta$. Then for all $t \leq T$ and all *i* and *v*, we can arrange to have:

$$s_t(i) \geq S_t, \qquad d_t(v) \leq D_t, \qquad \frac{S_T}{D_T} \geq 2e.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Main idea

Let $s_t(i)$ = size of part *i* at start of iteration *t*. Let $d_t(v)$ = degree of *v* at start of iteration *t*.

Claim: Let $T = \frac{10}{\epsilon} \log \Delta$. Then for all $t \leq T$ and all *i* and *v*, we can arrange to have:

$$s_t(i) \geq S_t, \qquad d_t(v) \leq D_t, \qquad \frac{S_T}{D_T} \geq 2e.$$

Alon (1988) Let G be a multipartite graph with maximum degree Δ and all parts of size $2e\Delta$. Then G has an independent transversal.

Main idea

Let $s_t(i)$ = size of part *i* at start of iteration *t*. Let $d_t(v)$ = degree of *v* at start of iteration *t*.

Claim: Let $T = \frac{10}{\epsilon} \log \Delta$. Then for all $t \leq T$ and all *i* and *v*, we can arrange to have:

$$egin{aligned} & s_t(i) \geq S_t, \qquad d_t(v) \leq D_t, \qquad rac{S_T}{D_T} \geq 2e. \ & S_1 = (1+\epsilon)\Delta, \qquad S_{t+1} pprox S_t \left(1 - rac{1}{1+\epsilon}rac{1}{\log\Delta}
ight) \ & D_1 = \Delta, \qquad D_{t+1} pprox D_t \left(1 - rac{1}{\log\Delta}
ight) \end{aligned}$$

Alon (1988) Let G be a multipartite graph with maximum degree Δ and all parts of size $2e\Delta$. Then G has an independent transversal.

Induction strategy

Property P(t): At the start of iteration t, all part sizes are $\geq S_t$ and all degrees are $\leq D_t$.

Induction strategy

Property P(t): At the start of iteration t, all part sizes are $\geq S_t$ and all degrees are $\leq D_t$.

To show that $P(t) \Rightarrow P(t+1)$ for t < T:

- Let A_i be the event that $s_{t+1}(i) < S_{t+1}$.
- Let B_v be the event that $d_{t+1}(v) > D_{t+1}$.
- Vertices that are far apart give independent events, so the dependency d ≤ O(Δ¹⁰⁰).
- Local Lemma: $ep(d+1) \le 1 \implies \mathbb{P}[\text{none of } A_i, B_v \text{ occur}] > 0.$

Suffices to show that $\mathbb{P}[A_i]$, $\mathbb{P}[B_v]$ are exponentially small.

On average, parts remain large enough ...

Goal: With very high probability, the size of the *i*th part is $\geq S_{t+1}$ at the end of iteration *t*, given *P*(*t*).

$$S_{t+1} \approx S_t \left(1 - \frac{1}{1 + \epsilon} \frac{1}{\log \Delta}\right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

On average, parts remain large enough ...

Goal: With very high probability, the size of the *i*th part is $\geq S_{t+1}$ at the end of iteration *t*, given *P*(*t*).

$$S_{t+1} \approx S_t \left(1 - \frac{1}{1+\epsilon} \frac{1}{\log \Delta} \right)$$

$$\mathbb{E}\left[s_{t+1}(i)\right] \geq s_t(i) \left(1 - \frac{1}{\log \Delta} \frac{1}{S_t}\right)^{D_t}$$

・ロット (雪) (日) (日)

On average, parts remain large enough ...

Goal: With very high probability, the size of the *i*th part is $\geq S_{t+1}$ at the end of iteration *t*, given *P*(*t*).

$$S_{t+1} \approx S_t \left(1 - \frac{1}{1+\epsilon} \frac{1}{\log \Delta} \right)$$

$$\begin{split} \mathbb{E}\left[\mathbf{s}_{t+1}(i)\right] &\geq \mathbf{s}_t(i)\left(1-\frac{1}{\log\Delta}\frac{1}{S_t}\right)^{D_t} \\ &\geq \mathbf{s}_t(i)\left(1-\frac{1}{\log\Delta}\frac{D_t}{S_t}\right) \\ &\geq \mathbf{s}_t(i)\left(1-\frac{1}{\log\Delta}\frac{1}{1+\epsilon}\right) \end{split}$$

... and part sizes are tightly concentrated

Define the random variable $X = s_t(i) - s_{t+1}(i)$.

This is the number of vertices lost in part *i* due to the selection of a neighbor.

- 1-Lipschitz: Every choice we make affects X by ≤ 1, because the local degree is 1.
- Certifiable: For every vertex that the *i*th part loses, there is one culprit.

Talagrand's Inequality:

$$\mathbb{P}\left[|X - \mathbb{E}\left[X\right]| > \frac{s_t(i)}{\log^2 \Delta}\right] < 4e^{-\frac{s_t(i)^2}{(\log^4 \Delta)9\mathbb{E}[X]}}$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の < @

Recall $D_{t+1} \approx D_t (1 - \frac{1}{\log \Delta})$.

Goal: Almost definitely, degree of v shrinks by a factor $\approx \frac{1}{\log \Delta}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Recall $D_{t+1} \approx D_t (1 - \frac{1}{\log \Delta})$.

Goal: Almost definitely, degree of v shrinks by a factor $\approx \frac{1}{\log \Delta}$.

Let Z = # of parts *adjacent* to v that are deleted in Step 4. (A part is *adjacent* to v if it contains a neighbor of v.)

Suffices to show: Almost definitely, $Z \approx \frac{d_t(v)}{\log \Delta}$.

Recall $D_{t+1} \approx D_t (1 - \frac{1}{\log \Delta})$.

Goal: Almost definitely, degree of v shrinks by a factor $\approx \frac{1}{\log \Delta}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ۹ペ

Let Z = # of parts *adjacent* to v that are deleted in Step 4. (A part is *adjacent* to v if it contains a neighbor of v.)

Suffices to show: Almost definitely, $Z \approx \frac{d_t(v)}{\log \Delta}$.

First activate parts adjacent to v. Let X = # of activated parts adjacent to v.

•
$$\mathbb{E}[X] = \frac{d_t(v)}{\log \Delta}.$$

• $X \approx \mathbb{E}[X]$ because it is Binomial.

- Z = # of parts adjacent to v deleted in Step 4.
- X = # of activated parts adjacent to v.

Randomly select a vertex from each of the X parts above.

- Since local degree is bounded, ∃ independent set of selected vertices of size Y ≈ X almost definitely.
- Almost definitely, every vertex in the graph is adjacent to ≤ log Δ vertices in Y, since local degree is bounded.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Z = # of parts adjacent to v deleted in Step 4.
- X = # of activated parts adjacent to v.

Randomly select a vertex from each of the X parts above.

- Since local degree is bounded, ∃ independent set of selected vertices of size Y ≈ X almost definitely.
- Almost definitely, every vertex in the graph is adjacent to ≤ log Δ vertices in Y, since local degree is bounded.

Activate the remaining parts and choose a random vertex in each. Y - Z is the number that are lost due to the selection of a neighbor.

 This difference is (log ∆)-Lipschitz and Certifiable, so Talagrand gives Z ≈ Y.

(日) (日) (日) (日) (日) (日) (日)

Conclusion

Question: What conditions ensure that *G* can be partitioned into a disjoint union of independent transversals?

Conclusion

Question: What conditions ensure that *G* can be partitioned into a disjoint union of independent transversals?

Alon (1992) Parts of size $C\Delta$ are sufficient (C very large). Haxell (2004) C = 3 is sufficient. Szabó, Tardos (2005) C cannot be reduced below 2. Folklore: C should be 2.

Conclusion

Question: What conditions ensure that *G* can be partitioned into a disjoint union of independent transversals?

Alon (1992) Parts of size $C\Delta$ are sufficient (C very large). Haxell (2004) C = 3 is sufficient. Szabó, Tardos (2005) C cannot be reduced below 2. Folklore: C should be 2.

Corollary of our result + trick of Aharoni, Berger, and Ziv: If the local degree is $o(\Delta)$, then parts of size $(2 + o(1))\Delta$ are sufficient.

L., Sudakov Conjecture: If the local degree is $o(\Delta)$, then parts of size $(1 + o(1))\Delta$ are sufficient.