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Independent Transversals

Let G be a multipartite graph with maximum degree A.

Independent transversal: One vertex from each part, with no
adjacencies between the vertices.
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Bollobas, Erdds, Szemerédi (1975) What ratios between the
part sizes and A will guarantee an independent transversal?
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Past Results

Alon (1988) Sufficient: part sizes > 2eA.
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Past Results

Alon (1988) Sufficient: part sizes > 2eA.
Haxell (2001) Sufficient: part sizes > 2A.
Jin (1992); Yuster (1997); Szabd, Tardos (2005) 2A is tight.
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A = 3, part sizes 2A — 1 =5, and no indep. trans.



Applications

Linear arboricity

Strong chromatic number

Partitioning into graphs with bounded components
List coloring

Cooperative colorings



Application: list coloring

Each vertex of graph G has a list of permitted colors.
Does G have a proper coloring with respect to the lists?
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Application: list coloring

Each vertex of graph G has a list of permitted colors.
Does G have a proper coloring with respect to the lists?

A:max{

cisinv’s color list :
v,C

# of neighbors of v with color ¢ in their list

Reed (1999) Con;j: lists of size A + 1 = 3 proper coloring.
Reed, Sudakov (2002) Lists of size (1 + o(1))A are sufficient.



Local degree

Let G be a multipartite graph with maximum degree A.

local degree = max {# of nbrs of v in i part}
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Cooperative colorings

Family of graphs with max. degree A, sharing same vertex set.
Color the vertex set with one independent set from each graph.

Q: What number of graphs will guarantee this is possible?

Vertex set:
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Cooperative colorings

Family of graphs with max. degree A, sharing same vertex set.
Color the vertex set with one independent set from each graph.

Q: What number of graphs will guarantee this is possible?
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Cooperative colorings

Aharoni, Berger, Holzman, Kfir (2005)

If there is no path of length < 4 between a
pair of vertices in the same part, then parts
of size (1 + o(1))A are sufficient.
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Cooperative colorings

Aharoni, Berger, Holzman, Kfir (2005)

If there is no path of length < 4 between a
pair of vertices in the same part, then parts
of size (1 + o(1))A are sufficient.

AN,
Corollary: (1 + 0o(1))A graphs are
<> % enough to ensure that a coopera-
tive coloring exists.
N

ABHK Conjecture: If the local degree is 1, then parts of size
(1 + o(1))A guarantee an independent transversal.
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New results

L., Sudakov (2005) Let G be a multipartite graph with maximum
degree A, local degree o(A), and all parts of size (1 + o(1))A.
Then G has an independent transversal.

Ks-free transversal: One vertex from each part, with no subset
inducing a Ks.

Ks-free transversal Transversal containing K.

Our main result is for Ks-free transversals with s = 2.



New results

Ks-free transversals: Let G be a multipartite graph with
maximum degree A, local degree o(A), and all parts of size
(1 +0(1))<&;. Then G has a Ks-free transversal.



New results

Ks-free transversals: Let G be a multipartite graph with
maximum degree A, local degree o(A), and all parts of size
(1 +0(1))<&;. Then G has a Ks-free transversal.

Construction to establish asymptotic tightness:
e A+ 1 parts, each of size {S%J

e Each level is a clique.
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New results

Ks-free transversals: Let G be a multipartite graph with
maximum degree A, local degree o(A), and all parts of size
(1 +0(1))<&;. Then G has a Ks-free transversal.

Construction to establish asymptotic tightness:
e A+ 1 parts, each of size {S%J

- 1o | © Eachlevelis a clique.

e To be Ks-free, a transversal can
o . . Lo only take < s — 1 vertices from
each level.

No Ks-free transversal o But it needs 1 from each part.
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Probabilistic tools
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Talagrand’s Inequality

o Probability space Q = [T, Q.
e Random variable X : Q — R.
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e Random variable X : Q2 — R.

e c-Lipschitz: If w,w” € Q differ only in 1 coordinate, then
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e Certifiable: For any s and w with X(w) > s, 3l C {1,...,n},
|I| <'s, such that all ' that agree with w on coordinates in |
have X(w’) > s as well.



Talagrand’s Inequality

o Probability space Q = [T, Q.

e Random variable X : Q2 — R.

e c-Lipschitz: If w,w” € Q differ only in 1 coordinate, then
X (w) — X(«")] < c.

e Certifiable: For any s and w with X(w) > s, 3l C {1,...,n},
|I| <'s, such that all ' that agree with w on coordinates in |
have X(w’) > s as well.

Then fort > /E[X],
2

P[X —E[X]| >t] < 4e 9%k,



Lovasz Local Lemma

o Family of events {B;})".

e Unlikely: all P[B;] < p.

e Mostly independent: each B; is mutually independent of all
but < d other events.

Then:

ep(d+1)<1 = P[none of B; occur] > 0.
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degree A and all parts of size 2eA. Then G has an
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Proof via Local Lemma:
e Randomly select 1 vertex from each part.

e For each edge w, let B,, be when both endpoints are
selected.
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Parts of size 2eA are enough

Alon (1988) Let G be a multipartite graph with maximum
degree A and all parts of size 2eA. Then G has an
independent transversal.

Proof via Local Lemma:
e Randomly select 1 vertex from each part.

For each edge w, let B,, be when both endpoints are
selected.

2
P ="P[Bu] = (5a)"

Dependency d < 2(2eA)A — 2.

ep(d + 1) < 1, so there is a case when none of B, occur.
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Proof of second result

Ks-free transversals: Let G be a multipartite graph with
maximum degree A, local degree o(A), and all parts of size
(1+0(1))s2;. Then G has a Ks-free transversal.

Proof using our main theorem:

e Color the vertices of G with s — 1 colors, minimizing
monochromatic edges.

¢ Delete all edges whose endpoints are different colors.

e The new maximum degree is L%J S0 our main theorem
applies.

e Anindep. trans. here is an (s — 1)-colorable subgraph of
the original graph, so it is a Ks-free transversal there.



Proof of main theorem

L., Sudakov (2005) Let G be a multipartite graph with maximum
degree A, local degree o(A), and all parts of size (1 + o(1))A.
Then G has an independent transversal.



Proof of main theorem

L., Sudakov (2005) Let G be a multipartite graph with maximum
degree A, local degree o(A), and all parts of size (1 + o(1))A.
Then G has an independent transversal.

Steps:
¢ Reduce to the case when local degree is less than 10.

e Use the “Rddl Nibble” to solve that final case.



Proof of main theorem

L., Sudakov (2005) Let G be a multipartite graph with maximum
degree A, local degree o(A), and all parts of size (1 + o(1))A.
Then G has an independent transversal.

Steps:
¢ Reduce to the case when local degree is less than 10.
Lemma: Given the above setup, there exists an induced
subgraph G’ of G with maximum degree A’, local degree
< 10, and parts of size (1 + o(1))A’, with respect to the
same partition.

e Use the “Rddl Nibble” to solve that final case.
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Proof of main theorem

Remains to show: Fix e > 0. For sufficiently large A, every
multipartite graph G with maximum degree A, local degree 1,
and parts of size (1 + €)A has an independent transversal.

Algorithm (one iteration):

1. Activate each part w.p. ﬁ.
Independently select a random
vertex in each activated part.

. Delete all neighbors of
selected vertices.

Add the remaining selected
vertices to the indep. trans.,
and delete their entire parts.

N

]
w

»



Main idea

Let si(i) = size of part i at start of iteration t.
Let di(v) = degree of v at start of iteration t.
Claim: Let T = 1—60 logA. Thenforallt <T andalliandv, we
can arrange to have:
St

st(i) > Sy, di(v) < Dy, Dy > 2e.
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Main idea

Let si(i) = size of part i at start of iteration t.
Let di(v) = degree of v at start of iteration t.

Claim: Let T = 1—60 logA. Thenforallt <T andalliandv, we
can arrange to have:

st(i) > St, di(v) <D, — > 2e.

S1 =(1+¢)A, St1 = St (1 - T |oglA>
D, =A, Dt41 ~ D (1 - ﬁ)

Alon (1988) Let G be a multipartite graph with maximum
degree A and all parts of size 2eA. Then G has an
independent transversal.
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Induction strategy

Property P(t): At the start of iteration t, all part sizes are > S;
and all degrees are < Dyx.

To showthat P(t) = P(t +1)fort < T:

e Let A be the event that sy 1(i) < Sty1.

e Let By be the event that d;1(v) > Dyy;.

¢ Vertices that are far apart give independent events, so the
dependency d < O(A1%),

e Local Lemma:
ep(d +1) <1 = P[none of A;, By occur] > 0.

Suffices to show that P [Aj], P [By] are exponentially small.



On average, parts remain large enough ...

Goal: With very high probability, the size of the i!" partis > S, 1
at the end of iteration t, given P(t).
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On average, parts remain large enough ...

Goal: With very high probability, the size of the i!" partis > S, 1
at the end of iteration t, given P(t).

1 1
St~ St (1_ 1+elogA>

E[si2(1)] > st(i)< |ogASt>Dt
St(i)< |oglA2:>

St(i)<l logA 1+ >

v
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...and part sizes are tightly concentrated

Define the random variable X = s;(i) — st 1(i).
This is the number of vertices lost in part i due to the selection
of a neighbor.
e 1-Lipschitz: Every choice we make affects X by < 1,
because the local degree is 1.

« Certifiable: For every vertex that the i!" part loses, there is
one culprit.

Talagrand’s Inequality:

. 2
i _ St(')
St(2 ) < 4e (og* A)9E[X]
log- A

P(IX —E[X]| >



Degrees shrink quickly enough

Recall D11 ~ D(1 — ﬁ).
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Degrees shrink quickly enough

Recall D11 ~ D(1 — ﬁ).

1
logA*

Goal: Almost definitely, degree of v shrinks by a factor ~

Let Z = # of parts adjacent to v that are deleted in Step 4.
(A part is adjacent to v if it contains a neighbor of v.)

Suffices to show: Almost definitely, Z ~ &%),

First activate parts adjacentto v.
Let X = # of activated parts adjacentto v.

d
e E[X] = ,(;éVA).

e X =~ E[X] because it is Binomial.




Degrees shrink quickly enough

Z = # of parts adjacent to v deleted in Step 4.
X = # of activated parts adjacent to v.

Randomly select a vertex from each of the X parts above.

e Since local degree is bounded, J independent set of
selected vertices of size Y ~ X almost definitely.

o Almost definitely, every vertex in the graph is adjacent to
<'log A vertices in Y, since local degree is bounded.



Degrees shrink quickly enough

Z = # of parts adjacent to v deleted in Step 4.
X = # of activated parts adjacent to v.

Randomly select a vertex from each of the X parts above.
e Since local degree is bounded, J independent set of
selected vertices of size Y ~ X almost definitely.
o Almost definitely, every vertex in the graph is adjacent to
<'log A vertices in Y, since local degree is bounded.

Activate the remaining parts and choose a random vertex in
each. Y — Z is the number that are lost due to the selection of
a neighbor.

e This difference is (log A)-Lipschitz and Certifiable, so
Talagrand gives Z =~ Y.
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Conclusion

Question: What conditions ensure that G can be partitioned
into a disjoint union of independent transversals?

Alon (1992) Parts of size CA are sufficient (C very large).
Haxell (2004) C = 3 is sufficient.

Szabd, Tardos (2005) C cannot be reduced below 2.
Folklore: C should be 2.

Corollary of our result + trick of Aharoni, Berger, and Ziv:
If the local degree is 0(A), then parts of size (2 + 0(1))A are
sufficient.

L., Sudakov Conjecture: If the local degree is o(A), then parts
of size (1 + o(1))A are sufficient.



