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1 Problems and famous results

1. Let G be a graph with all degrees at least 20. Prove that it is possible to partition the vertices into
two groups such that for each vertex, at least 10 of its neighbors ended up in the other group.

Solution: Take a max-cut: the bipartition which maximizes the number of crossing edges.

2. (Mantel.) Prove that every graph with strictly more than n2

4 edges contains a triangle.

Solution: Assume no triangles. Then for every edge uv, must have d(u) + d(v) ≤ n. Sum over all
edges. Then

nE ≥
∑

d(v)2 ≥ n ·
(

2E

n

)2

=
4E2

n
,

i.e., E ≤ n2/4, contradiction.

3. (Turán.) The n-vertex Kt-free graphs with the most edges are the complete (t−1)-partite graphs with
all parts of size as equal as possible.

Solution: Zykov symmetrization. First show any non-adjacent vertices have same degree. Indeed, if
one has more degree, then delete the smaller and clone the larger, and get strictly more edges without
making any bigger cliques.

Next show non-adjacency is an equivalence relation, to get a complete multipartite graph (and then
use convexity). So suppose we had x, y1, y2 such that x is not adjacent to either yi, but the yi are
adjacent to each other. By previous, d(y1) = d(x) = d(y2). But note that the degree of yi includes +1
for their internal edge (and this is double-counted when adding d(y1) + d(y2), so if we delete both yi
and clone x twice, then we get at least +1 in total edges.

4. (Moscow, 1964, from GDC 2008.) King Arthur summoned 2n knights to his court. Each knight has
at most n− 1 enemies among the other knights present. Prove that the knights can sit at the Round
Table so that no two enemies sit next to each other. (The “enemy” relation is symmetric.)

Solution: This is Dirac’s theorem in disguise. Suppose the longest path has t vertices x1, . . . , xt.
We will show there is a cycle of t vertices as well. Suppose not. All neighbors of x1 and xt must lie on
the path or else it is not longest. Minimum degree condition implies that both have degree ≥ t/2. But
if x1 ∼ xk, then xt 6∼ xk−1 or else we can re-route to get a cycle. So, each of x1’s t/2 neighbors on the
path prohibit a potential neighbor of xt. Yet xt’s neighbors come from indices 1 . . . t − 1, so there is
not enough space for xt to have t/2 neighbors there, avoiding the prohibited ones.

Now if this longest path is not the full n vertices, then we get a cycle C missing some vertex x. But
min-degree n/2 implies that the graph is connected (smallest connected component is n/2+1), so there
is a shortest path from x to C, and adding this to the cycle gives a longer path than t, contradiction.

5. Let G be a connected graph with 100 vertices, in which all vertices have degree at least 10. Prove that
G contains a path with at least 21 vertices.
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6. (China, 1986, from GDC 2008.) In a chess tournament with n players, every pair of players plays once
and there are no draws. Show that there must be some player A such that for every other player B,
either A beat B or A beat some other player C who in turn beat B.

Solution: (From Havet and Thomassé, 2000.) A vertex v in a directed graph is a king if every other
vertex can be reached from it via directed paths of length at most 2. That is, V = {v}∪N+(v)∪N++(v).
Show that every tournament has a king.

Take the first vertex v1 in a median order, and consider vk. If already −−→v1vk, then done. Otherwise, by
the feedback property, at least half of the edges from v1 to v2 . . . vk point forward. These give at least
k−1
2 landing points in v2 . . . vk−1, because we assumed that v1 does not go to vk. Similarly, there are

at least k−1
2 vertices in v2 . . . vk−1 which are origination points for edges directed to vk. Yet there are

only k − 2 vertices in this window, so by pigeonhole some vertex is both an origination point and a
landing point, giving a directed path of length 2.

7. (Romania.) Given n points in the plane, prove that there exists a set of
√
n points such that no 3

points in the set form an equilateral triangle.

Solution: First we prove the Erdős-Szekeres theorem, that every sequence of n2 distinct numbers
contains a subsequence of length n which is monotone (i.e. either always increasing or always decreas-
ing). Indeed, for each of the n2 indices in the sequence, associate the ordered pair (x, y) where x is the
length of the longest increasing subsequence ending at x, and y is the length of the longest decreasing
one. All ordered pairs must obviously be distinct. But if they only take values with x, y ∈ {1, . . . , n−1},
then there are not enough for the total n2 ordered pairs. Thus n appears somewhere, and we are done.

Next, we find an x-axis direction such that all points have distinct projection on both x and y (or-
thogonal) axes. Order the points according to this direction, and let y1, . . . , yn be their corresponding
y-coordinates (distinct). By Erdős-Szekeres, there is a monotone subsequence of the desired length.
But this cannot contain an equilateral triangle.

8. (Diestel 2.20.) Let G be a graph, and let α be the size of its largest independent set. Prove that the
vertices of G can be covered by ≤ α vertex-disjoint subgraphs, each either a cycle, a K2, or a K1.

Solution: Take a longest path, and say that it ends at v. Make a cycle by taking the edge from v
back to its earliest neighbor along the path. Delete this cycle from the graph. Importantly, v is not
adjacent to any vertex in the rest of the graph! So, in the remainder, the independence number is at
most α − 1, and we may apply induction. Note that K2 arises when the longest path has only one
edge, in which case we can’t close a cycle, and K1 arises when the longest path is a single vertex.

9. (Gallai, Hasse, Roy, Vitaver.) Let D be a directed graph, and let χ be the chromatic number of its
underlying undirected graph. Show that D has a directed path of at least χ vertices.

Solution: Take a maximal acyclic subgraph, and use it to define level sets, by coloring each vertex
by the length of the longest directed path that ends at that vertex.
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