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Warm-Ups

1. (Russia 1990) There are 30 senators in a senate. For each pair of senators, they are either friends or
enemies. Every senator has exactly 6 enemies. Find A + B, where A is the number of 3-subsets of
senators that are all enemies, and B is the number of 3-subsets of senators that are all friends.

Solution: Make graph with black if enemies and blue if friends; count the number of formations of
blue/black meeting at one vertex. Answer is 1990.

2. (Zuming 7.3) There are 12 students in Mr. Fat’s combinatorics class. At the beginning of each week,
Mr. Fat assigns a project to his students. The students pair up into 6 groups. Each pair works on the
project independently and submits the work at the end of the week. Each week, the students can pair
up as they wish. Prove that, regardless of the way the students choose their partners, there are always
2 students such that |A ∪ B| ≥ 5, where A is the set of students who have worked with both of them
and B is the set that has worked with neither.

3. (1J) Let G be a graph on n > 3 vertices with no vertex of degree n − 1. Suppose that for any two
vertices of G, there is a unique vertex joined to both of them. Prove that G is regular.

4. (4.3) Let G be a graph on n > 2 vertices with all degrees at least n/2. Prove that G contains a
Hamiltonian circuit.

5. (5.5) Let A be a square matrix with nonnegative integer entries, such that all row and column sums
are the same. Prove that A is the sum of some number of permutation matrices, where a permutation
matrix is a square matrix containing only 0’s and 1’s, where every row and column has exactly one 1.

Solution: Hall’s marriage Lemma

Problems

1. (2F) Suppose G is a graph with exactly one vertex of degree i for 2 ≤ i ≤ m and k other vertices, all
of degree 1. For each m, give a construction with k = bm+3

2 c.

2. (4C) If a graph on n vertices has e edges, then it has at least e
3n (4e− n2) triangles.

Solution: Number of triangles on a given edge {vi, vj} is at least di + dj − n. Sum over all edges
and divide by three, and then use RMS-AM.

3. (3.3) Ramsey’s Theorem. Let r ≥ 1 and qi ≥ r, i = 1, 2, . . . , s be given. There exists a minimal
positive integer N(q1, q2, . . . , qs; r) with the following property. Let S be a set with n elements. Suppose
that all

(
n
r

)
r-subsets of S are divided into s mutually exclusive families T1, . . . , Ts (“colors”). Then if

n ≥ N(q1, q2, . . . , qs; r) there is an i, 1 ≤ i ≤ s, and some qi-subset of S for which every r-subset is in
Ti.

Solution: Induction on r, for case s = 2:

(a) Trivial for r = 1: N(p, q; 1) = p + q − 1.
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(b) For any r and p ≥ r, clear that N(p, q; r) = p and symmetrically for the second argument as well.

(c) Now induct on r. Assume true for r − 1, and induct on p + q.

N(p, q; r) ≤ N [N(p− 1, q; r), N(p, q − 1; r); r − 1] + 1

4. (3G) Let m be given. Show that if n is large enough, every n×n (0, 1)-matrix has a principal submatrix
of size m, in which all the elements below the diagonal are the same, and all the elements above the
diagonal are the same.

Solution: On Kn, color edge {i, j} with i < j in one of 4 colors; color being the ordered pair (aij , aji).
A Km corresponds to the principal submatrix on the rows/cols indexed by the m indices picked.

5. (21D) A strongly regular graph with parameters (v, k, λ, µ) is a graph with v vertices, regular with
degree k, and such that for any pair of adjacent vertices x and y, there are exactly λ vertices adjacent
to both x and y, and for any pair of non-adjacent vertices x and y, there are exactly µ vertices adjacent
to both x and y. Prove that no strongly regular graph with parameters (28, 9, 0, 4) exists.

6. (cit.t3.7.1) A connected graph is said to be k-edge-connected if one must delete at least k edges in
order to disconnect the graph. Prove that G is k-edge-connected if and only if there are at least k
edge-disjoint paths linking any pair of distinct vertices.

7. (cit.t3) A connected graph is said to be k-vertex-connected if one must delete at least k vertices in
order to disconnect the graph. Prove that G is k-vertex-connected if and only if there are at least k
totally-internally-disjoint paths linking any pair of distinct non-adjacent vertices.

8. (cit.t3.7.2) Let G be a k-vertex-connected graph. Prove that for any set of k vertices of G, there exists
a cycle that contains all of them. (A cycle is a closed path that never visits a vertex more than once.)

9. (cit.t3) Let G be a bipartite graph. Then χ′(G) = ∆(G), where χ′(G) is the edge chromatic number
of G, which is the minimum number of different colors needed to color the edges of G in such a way
that no incident edges receive the same color, and ∆(G) is the maximum degree of a vertex.

Solution: Induction on number of edges, alternating path

10. (cit.t3) Vizing’s Theorem. Let G be a graph. Then ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

Solution: Suppose we have a colouring of all but one edge xy ∈ E(G) using colours {1, 2, · · · ,∆(G)+
1}. Then we wish to recolour so all the edges are coloured.

Note that one colour is unused (“missing”) at every vertex.

Let xy0 be the uncoloured edge. We construct a sequence of edges xy0, xy1, · · · and a sequence of
colours c0, c1, · · · as follows.

Pick ci to be a colour missing at yi. Let xyi+1 be an edge with colour ci. We stop with k = i when
either ck is a colour unused at x, or ck is already used on xyj for j < k.

If ck was a colour unused at x then we recolour xyi with ci for 0 ≤ i ≤ k. This finishes the easy case
where we can recolour the edges touching x to give a a colouring for G.

Otherwise we recolour xyi with ci for 0 ≤ i < j and uncolour xyj . Notice that ck (red) is missing at
both yj and yk. Let blue be a colour unused at x.

(a) If red is missing at x, we colour xyj red.

(b) If blue is missing at yj we colour xyj blue.

(c) If blue is missing at yk we colour xyi with ci for j ≤ i < k and colour xyk blue. (None of the xyi,
j ≤ i < k are red or blue.)
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If none of the above hold, then we consider the subgraph of red and blue edges. The components of
this subgraph are paths or cycles. The vertices x, yi, yk are the end vertices of paths. Therefore they
cannot all belong to the same component.

Select a component that contains exactly one of these vertices. Now swap over red and blue in this
component. Now one of the conditions above must apply.

11. (cit.t3.8.4) Let G be a graph. We say that G is k-list-colorable if G satisfies the following property:
Let X be a set of colors, and for each vertex v ∈ G, let Sv ⊂ X be a set of k of the colors. Then under
any choice of X and {Sv}, there exists a coloring of each vertex v ∈ G with a color from its associated
list, in such a way that adjacent vertices receive different colors.

On the other hand, we say that G is k-vertex-colorable if there exists a way to color the vertices of G
with k colors in such a way that adjacent vertices receive different colors.

For every integer k, construct a graph Gk that is 2-vertex-colorable but is not k-list-colorable.

12. (6A) Let a1, a2, . . . , an2+1 be a permutation of the integers 1, 2, . . . , n2 + 1. Show that there is a
subsequence of length n + 1 that is monotone.

Solution: Dilworth’s theorem on poset of {(i, ai)}. Define (x, y) ≤ (x′, y′) iff x ≤ x′ and y ≥ y′.

13. (6.1) Dilworth’s Theorem. Let P be a finite poset. The minimum number m of disjoint chains which
together contain all elements of P is equal to the maximum number M of elements in an antichain of
P .
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