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Warm-Ups

1. (Russia 2000/9) Find all functions f : R — R which satisfy f(z+y)+f(y+2)+f(z+z) > 3f(x+2y+32)
for all z,y, 2.

Solution: Answer: f constant. Solution:

Put x = a,y = z = 0, then 2f(a) + f(0) > 3f(a), so f(0) > f(a). Put x = a/2,y = a/2,z = —a/2.
Then f(a) + f(0) + f(0) > 3f(0), so f(a) > f(0). Hence f(a) = f(0) for all a. But any constant
function obviously satisfies the given relation.

2. (MOP97/2/1) Let f be a real-valued function which satisfies

(a) for all real .y, f(z +y) + f(z —y) = 2f(x)f(y).
(b) there exists a real number z( such that f(xg) = —1.

Prove that f is periodic.

Solution: Swapping = and y yields that function is even. Yet plugging in © = y = 0 we get f(0) =
or 1. If it is 0, then plugging in y = 0 yields f = 0, done.

Otherwise, f(0) = 1, and plug in x = y = z0/2 to get f(zo)+1 = 2f(x0/2)?, implying that f(x¢/2) = 0.
Now plugging in y = x¢/2, we get that f(x+x/2) = —f(x — 2/2), so function inverts sign every x.
Hence periodic with period 2xq.

3. (Balkan 1987/1) f is a real valued function on the reals satisfying (1) f(0) = 1/2, (2) for some real a
we have f(z +vy) = f(z)f(a —y) + f(y)f(a — ) for all x,y. Prove that f is constant.
Solution: Put = y = 0. We get f(0) = 2f(0)f(a), so f(a) = 1/2. Put y = 0, we get
f(@) = f(2)f(a) + f(0)f(a—2), 50 f(z) = f(a—=). Put y =a— =, we get f(a) = f(2)* + f(a —2)?
so f(z)=1/2 or —1/2.
Now take any x. We have f(x/2) = 1/2or —1/2 and f(a—x/2) = f(x/2). Hence f(z) = f(z/2+x/2) =
2f(x)fla—x/2) =1/2.

Problems

1. (IMO 2002/5) Find all real-valued functions f on the reals such that [f(z) + f(v)][f(uv) + f(v)] =
flazu —yv) + f(axv + yu) for all z,y,u,v.
Solution: Plug in all 0; then f(0) =0 or 1/2. If 1/2, then plug in x = y = 0 and get f(u)+ f(v) =
implying that constant at 1/2. Now suppose f(0) =
Plug in = v = 0. Then f(y)f(u) = f(yu). So f(1)? = f(1) implying that f(1) = 0 or 1. If 0, then
multiplicativity implies that constant at 0. Else:
Plug in z = y = 1. Now 2[f(u) + f(v)] = f(u—v) + f(u+v). Using u =0, v = 1, get f(—1) = 1.
Multiplicativity implies f is even.



Plug in 2 = y,u = v. Then 4f(x)f(u) = f(2zu). Multiplicativity implies that f(2) = 4. More
multiplicativity gives that f(x) = 22 for all powers of 2. Inductively using 2[f(u) + f(v)] = f(u—v) +
f(u+v), get that f(z) = 22 for all integers. Reverse multiplicativity implies that f(q) = ¢ for all
rationals.

Multiplicativity implies f(z%) = f(z)? so f > 0. Yet plug in * = v,y = u and get f(z% +y?) =
[f(x) + f(y)]* > f(x)? by nonnegativity, so increasing function.

. (IMO 1999/6) Determine all functions f : R — R such that f(z — f(y)) = f(f(y)) + 2f(y) + f(z) —
for all z,y € R.

Solution:  Let ¢ = f(0) and A be the image f(R). If a is in A, then it is straightforward to find
f(a): putting a = f(y) and z = a, we get f(a —a) = f(a) +a® + f(a) — 1,50 f(a) = (1+¢)/2 —a?/2
(*)-

The next step is to show that A — A = R. Note first that ¢ cannot be zero, for if it were, then putting
y =0, we get: f(z—c)= f(c) +ac+ f(z) —1 (**) and hence f(0) = f(c) = 1. Contradiction. But
(**) also shows that f(x —c) — f(z) = zc+ (f(c) — 1). Here z is free to vary over R, so zc+ (f(c) — 1)
can take any value in R.

Thus given any z in R, we may find a,b € A such that + = a — b. Hence f(z) = f(a —b) =
f(b) +ab+ f(a) — 1. So, using (*): f(x) =c—b?/2+ab—a?/2 =c— 2?%/2.

In particular, this is true for € A. Comparing with (*) we deduce that ¢ = 1. So for all z € R we
must have f(z) = 1—22/2. Finally, it is easy to check that this satisfies the original relation and hence
is the unique solution.

. Let f(z) be a continuous function with f(0) = 1. Suppose that for every n € Z and any t € R:

(f@)" = f (Vnt).

Prove that there exists a constant ¢ such that on RT, f(¢) = et’,

Solution:  Suppose there exists ¢ > 0 such that f(¢) < 0. Then there exists a minimal sy > 0 such
that f(sg) = 0. But then f(so) = f(so/v/2)?, contradicting minimality. Same holds for ¢ < 0.

Therefore, this function exists: L(t) = log f(t). But then for any m,n € Z*, we have L((n/m)t) =
(n/m)2L(t). Continuity tells us that L(r) = r2L(1) for any r € R*.

. (IMO 1996/3) Let S be the set of non-negative integers. Find all functions f : S — S such that
f(m+ f(n)) = f(f(m)) + f(n) for all m,n.

Solution: Setting m = n = 0, the given relation becomes: f(f(0)) =
f(0) = 0. Hence also f(f(0)) = 0. Setting m = 0, now gives f(f(n)) = f(
original relation as f(m + f(n)) = f(m) + f(n).

So f(n) is a fixed point. Let k be the smallest non-zero fixed point. If k£ does not exist, then f(n) is zero
for all n, which is a possible solution. If k& does exist, then an easy induction shows that f(gk) = ¢k
for all non-negative integers q. Now if n is another fixed point, write n = kq+r, with 0 < r < k. Then
f(n)=flr+ f(kq)) = f(r)+ f(kq) = kq+ f(r). Hence f(r) = r, so r must be zero. Hence the fixed
points are precisely the multiples of k.

{( (0)) + f(0). Hence

so we may write the

But f(n) is a fixed point for any n, so f(n) is a multiple of k for any n. Let us take ni,na,...,ng_1
to be arbitrary non-negative integers and set ng = 0. Then the most general function satisfying the
conditions we have established so far is: f(¢k + ) = gk + n.k for 0 <r < k.

We can check that this satisfies the functional equation. Let m = ak+r, n =bk+s, with 0 < r,;s < k.
Then f(f(m)) = f(m) = ak + nyk, and f(n) = bk + nsk, so f(m+ f(n)) = ak + bk + n,-k + nsk, and
f(f(m)) + f(n) = ak + bk + n,.k + nsk. So this is a solution and hence the most general solution.



5. (IMO 1994/2) Let S be the set of all real numbers greater than —1. Find all functions f : S — S such
that f(z 4+ f(y) +2f(y)) =y + f(z) +yf(z) for all z and y, and f(x)/z is strictly increasing on each
of the intervals —1 < z < 0 and 0 < .
Solution:  Suppose f(a) = a. Then putting £ = y = a in the relation given, we get f(b) = b, where
b=2a+a* If -1 <a <0, then —1 <b < a. But f(a)/a = f(b)/b. Contradiction. Similarly, if a > 0,
then b > a, but f(a)/a = f(b)/b. Contradiction. So we must have a = 0.
But putting = y in the relation given we get f(k) =k for k = x + f(z) + = f(x). Hence for any x we
have z + f(z) + = f(x) = 0 and hence f(z) = —z/(z + 1).
Finally, it is straightforward to check that f(z) = —x/(z + 1) satisfies the two conditions.

6. (IMO 1992/2) Find all functions f defined on the set of all real numbers with real values, such that
f@?+ f(y)) =y + f(x)? for all z,y.
Solution:  The first step is to establish that f(0) = 0. Putting x = y = 0, and f(0) = ¢, we
get f(t) = t2. Also, f(2? +1t) = f(x)?, and f(f(z)) = = +t2. We now evaluate f(t*> + f(1)?) two
ways. First, it is f(f(1)2 + f(t) =t + f(f(1))2 =t + (1 +t3)? = 1+t + 2t2 + t*. Second, it is
JE+fA+t)=1+t+ f(t)2’=1+1t+t* Sot =0, as required.
It follows immediately that f(f(z)) = @, and f(2?) = f(z)?. Given any y, let z = f(y). Then
y= f(2),s0 f(z? +y) = z+ f(x)? = f(y) + f(x)?. Now given any positive z, take z so that x = 2.
Then f(z +y) = f(2* +y) = f(y) + f(2)* = f(y) + f(2°) = f(2) + f(y). Putting y = —=, we get
0= f(0) = f(x + —x) = f(x) + f(—=x). Hence f(—x) = —f(x). It follows that f(z+y) = f(z) + f(y)
and f(z —y) = f(x) — f(y) hold for all z,y.
Take any x. Let f(x) =y. Ify >z, thenlet z =y—=a. f(z)=fly—2)=fly)—flx) =x—y=—2z.1f
y < x,thenlet z=x —yand f(2) = f(x —y) = f(x) — f(y) = y — x. In either case we get some z > 0
with f(z) = —2 < 0. But now take w so that w? = 2, then f(z) = f(w?) = f(w)? > 0. Contradiction.
So we must have f(z) = z.

7. (Balkan 2000/1) Find all real-valued functions on the reals which satisfy f(zf(z)+ f(y)) = f(2)?> +y
for all x,y.

Solution:  Answer: (1) f(z) = z for all z; (2) f(z) = —z for all z.
Put z = 0, then f(f(y)) = f(0)2 +y. Put y = —f(0)? and k = f(y)
x =y =k Then f(0)=0+k, so k= f(0). Put y = k,x =0, then f(0)
f(0) =0.

Put z = 0, f(f(y)) =y (*). Put y =0, f(zf(z)) = f(x)? (**). Put 2 = f(2) in (**), then using
f(z) = x, we have f(zf(2)) = 22. Hence 22 = f(z)? for all z (***). In particular, f(1) = 1 or —1.
Suppose f(1) = 1. Then putting = 1 in the original relation we get f(1+ f(y)) = 1 + y. Hence
(1+ f(5)) = (1 + y)*. Hence f(y) = y for all .

Similarly if f(1) = —1, then putting z = 1 in the original relation we get f(—1+ f(y)) = 1+y. Hence
(=14 f(¥)* = (1 +y)* so f(y) = —y for all y.

Finally, it is easy to check that f(x) = z does indeed satisfy the original relation, as does f(z) = —=.

Then f(k) = 0. Now put

+ = f(0)? + k, so k = 0. Hence

8. (IMO 1990/1) Construct a function from the set of positive rational numbers into itself such that
f(@f(y)) = f(x)/y for all z,y.
Solution: We show first that f(1) = 1. Taking = y = 1, we have f(f(1)) = f(1). Hence
fQ) =) = Q) =)/ f(1) =1.
Next we show that f(zy) = f(x)f(y). For any y we have 1 = f(1) = f(1/f(y)f(y)) = f(1/f(y))/y, so
if z=1/f(y) then f(z) = y. Hence f(zy) = f(zf(2)) = f(x)/z = f(2)f(y).
Finally, f(f(z)) = f(1f(z)) = f(1)/z = 1/=.
We are not required to find all functions, just one. So divide the primes into two infinite sets S =
{p1,p2,...} and T = {q1, q2,...}. Define f(pn) = ¢n, and f(¢n) = 1/pn. We extend this definition to all

rationals using f(zy) = f(2)f(): f(PiPi -+ @i @iz /(Phy = Gy +)) = Py =~ iy ==+ /(P ey )
It is now trivial to verify that f(zf(y)) = f(x)/y.



9. (IMO Shortlist 1995/A5) Does there exist a real-valued function f on the reals such that f(x) is
bounded, f(1) =1 and f(z +1/2%) = f(z) + f(1/x)? for all non-zero z?
Solution: Answer: no.
Suppose there is such a function. Let ¢ be the least upper bound of the set of values f(z). We
have f(2) = f(1+ 1/12) = f(1) + f(1/1)> = 2. So ¢ > 2. But definition we can find y such that
fly) >c—1/4. Soc> fly+1/y?) = fly) + f(1/y)? > c—1/4+ f(1/y)%. So f(1/y)? < 1/4 and hence
f(L/y) > =1/2.
We also have ¢ > f(1/y+y?) = f(1/y)+f(y)? > —1/2+(c—1/4)? = ¢2—¢/2—7/16. So c?—3¢/2—7/16 <
0, or (c—3/4)? < 1. But ¢ > 2, so that is false. Contradiction. So there cannot be any such function.



