Math 301: The Erdos-Stone-Simonovitz Theorem and Extremal
Numbers for Bipartite Graphs

Mary Radcliffe

1 The Erdos-Stone-Simonovitz Theorem

Recall, in class we proved Turdn’s Graph Theorem, namely

Theorem 1 (Turan’s Theorem). Let k > 3. Then ex(n, K) = V;}?I’;J .
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On the other hand, there exist graphs having {%J edges that do not contain Kj as a subgraph.

That is to say, if G is a graph having at least { J + 1 edges, then G contains K}, as a subgraph.

Moreover, we showed that the extremal graphs (that is, the graphs achieving the bound) are the complete
balanced (k — 1)-partite graphs (shown in Figure . As these will come up again, we shall denote this
graph by Ti_1(n), called a Turdn graph.

Our goal for the next few theorems is to extend this result as best we can to other classes of graphs.
First, let’s think about what was special about the Turdn graphs. These graphs work for our situation
because we can group the vertices up into £ — 1 independent sets, and the Pigeonhole Principle allows us
to say that if a K} were present, it would have to have two vertices in one of these independent sets (which
is, of course, impossible).

So perhaps, then, what is special about Turan graphs is the independent sets. That is to say, it is
certainly clear that any graph whose vertex set can be written as a union of £ — 1 independent sets can
contain no copy of Kj. Perhaps this is the key to unlocking extensions of this extremal number.

So when can a graph be written as a union of k£ — 1 independent sets?

Lemma 1. Let G be a graph on n vertices. The vertex set of G can be partitioned into k — 1 independent
sets if and only if G can be properly colored with at most k — 1 colors.

The proof of this lemma is essentially trivial. Note that if we properly color the vertices of G, then any
two vertices having the same color must be independent. Taking the partition as exactly the color classes
will yield the result, and vice versa: given a partition as above, we may color each independent set with
one color to obtain a (k — 1)-coloring.

Fundamentally, this is the problem with finding a K}, inside of Tj_1(n): the Turdn graph is (k — 1)-
colorable, so any subgraph of Tj_1(n) is also (k — 1)-colorable. But K}, is not. This leads to the following
immediate generalization:

Theorem 2 (Erdés-Stone-Simonovitz Theorem). Let H be a graph with chromatic number x(H) =k > 3.
2
Then ex(n,H) < % + o(nQ); i.e., the extremal number for H is asymptotically equal to the number

of edges in T_1(n).

Furthermore, it should be clear that the extremal graphs will be the Turdn graphs. (If that is not clear,
prove it as an exercise. Use induction.)



Figure 1: The Turdn Graph. Here, we assume that |V;| and |V;| are sets of vertices, whose sizes differ by
at most 1 for any 4, j, and the solid lines between sets of vertices indicate that all edges are present. This
graph is a complete (k — 1)-partite graph, in that we have all edges between partition sets, and is balanced
in the sense that the sizes of the vertex partition are balanced.

The proof of this theorem is messy, so before we get into the details, let’s sketch it out. Since we
are looking at an asymptotic result, we actually need to show that for any ¢ > 0, there exists some N

sufficiently large that if n > N, then ex(n, H) < (f(gl_)n; + en?. Since € is arbitrarily small, we essentially
(k—1)n?

have written that ex(n, H) < 577

+ 0(n2), just as we wanted.
So here will be our strategy:

1. Choose some small e.

2. Look at a graph having n vertices and at least (5(;17)?)2 + en? edges.

3. Show that if n is large enough, we can find, as a subgraph here, the complete k-partite graph having
partite sets of size at least ¢ (for any t. We will specify later). Actually, we will show it contains a
copy of Ty(kt) as a subgraph (which is the same thing).

4. Notice that since H is k-colorable, as long as ¢ is larger then the size of each color class, we can embed
h inside Ty (kt), by embedding each color class in one of the partite sets, and then using whichever
edges we need.

5. Realize that these steps are enough to prove the statement: we have shown that in any graph G
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having at least + en? (with n large enough), we can find a copy of H by lazily picking

t=[V(H)|
6. WIN THE GAME!!!!

Certainly, the difficulty of this strategy lies entirely in Step 3. This will be the bulk of the work in
proving the theorem. Since this part of the proof is hairy, we shall split it up into some lemmas.

Lemma 2. Fiz e > 0, and let G be a graph on n vertices having at least (1;912;2 + en? edges. Then G

contains a subgraph D having at least m = \/e(k — 1)n vertices, such that the degree of every vertex in D

is at least (% —|—€) m+ 1.

Proof. We shall produce D using the following algorithm:



1. Initialize: Do = G, ng = n.

2. Given D;,n;: let v € V(D;) be a vertex in D; having degree < (% + 6) n;

3. Define D, = D;\{v}; that is, D;; is obtained from D, by removing the vertex v. Define n;41 =
[V(Diz1)|=ni—1=n—-(i+1).

4. Repeat steps 2 and 3 until no vertex v satisfies 2.

5. Output D;.

Clearly, this algorithm will terminate eventually, since eventually we will either have a graph whose

vertices all have a large degree, or a graph with no vertices. We’d really like it to be the first thing, so

let’s consider how long the algorithm will run for. To do so, let’s look carefully at the i*® step.

Notice that in the (i 4+ 1) step, we remove at most (’;%f + e) n; edges from D;. Hence, the subgraph

D; is obtained by removing at most
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edges from G. Also, the total number of edges in D; is at most (T;) < . Therefore, the total number of

edges in G is at most
n? k—2 n?—n?+n-—n;
74’ +e€ .
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On the other hand, the hypothesis was that G contains at least (g@l_)f) +en? edges. Therefore, it must

be that

(k‘—l)n2+€n2<rﬁ+ I<;—2_|_6 n?—n?+n-—n;
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Therefore, this process must stop whenever the above inequality fails to hold. That is, the process termi-
nates when
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Notice, the left hand side of this inequality is just a constant (when G is fixed, which it is), and the left
hand side is a parabola that decreases when n; decreases. If you use the quadratic formula, you will find

(k—1)n? > o nf+<k2+)n2n?+nni
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that this inequality is true so long as n; < y/e(k — 1)n. That is to say, after at most n (1 — ek — 1))

steps, the algorithm must terminate, and thus the result holds. O



Figure 2: The set P defined in the proof of Lemma 3. Note that if we consider a vertex in P, it has a lot
of edges (namely, t edges) into each set A;. However, the edges need not always be to the same vertices.

Lemma 3. Let € > 0, k > 1, and let G be a graph on n such that every vertex of G has degree at least
(% + e) n. Fizt > 0. Then if n is sufficiently large, Ty (kt) is a subgraph of G.

Proof. We shall work by induction on k. Note that the case of k = 1 is trivial, since T} (t) is the empty
graph on t vertices.

Suppose the result is known for k — 1 for any choice of t. Let s = {ﬂ Notice that % =1- k—il <
1-— ﬁ, and hence G has sufficiently many edges to apply the induction hypothesis. Choose n large
enough that we can find a copy of Ty_1((k —1)s) in G. Label the partite sets as A;, As, ..., Ax_1, and let

A=A UA3U---UAg_1. Let W be the set of vertices in V(G) that do not appear in A.

Define P = {v € W | N(v) N 4; >t for every i}; that is, P is the set of vertices that have at least ¢
edges into each A;. This is illustrated in Figure [2l Notice that our goal now is to construct a set By C P,
such that for each i, there is a subset B; C A; with every possible edge between By and B;, and |B;| = t.
This will be exactly a Ty (kt). We have restricted to P, since these are the only possible vertices to be
included in such a set Bj. See Figure

Most of the rest of the proof comes down to counting. First, let us count the number of nonedges
between W and A.

First, if a vertex v € W is not in P, then there exists some ¢ such that the number of edges from v to
A; is at most t — 1. Hence, the number of nonedges between W and A is at least (|[W|—|P|)(s—t+1) >
(IW]=1P])(s —1).

On the other hand, the degree of every vertex in G is at least (% + e) n, and hence given any vertex
v, the number of nonedges involving v is at most n— (% + e) n=n (ﬁ — e). Summing over all vertices

in A, we thus obtain that the number of nonedges between W and A is at most s(k — 1)n (ﬁ - e).

Taking these two bounds together yields

sk — D — ) > (W] = |P)(s — 0).
k-1



Figure 3: The goal of the proof: to find a (size t) subset B; in each A;, and a set By in P, with all the
edges between B, and each B;. Notice that we already have all the edges between B; and B; when i # j
and both 4, j < k, since they are subsets of the A; sets.

Recalling that s = £ and |[W| = n — s(k — 1), this yields

tk - )n (kil - e) > (n—s(k—1) — |P|)(t — et).

Solving this inequality for |P| and using lots of algebra, we obtain

P|>n <E(f_62)> —s(k—1).

The important thing here is that |P| is monotonically increasing with n, even as |A| stays the same.
Hence, we may choose |P| as large as we like. Moreover, note that by the pigeonhole principle, as long
as | P| is large enough, we will be able to find a set By in P satisfying the desired properties. Hence, by
taking n sufficiently large, we can produce such B;, and the result is demonstrated.

O
Note that these two lemmas immediately prove the Erdés-Stone-Simonovitz theorem, as we can first
find a good subgraph D in G by Lemma [2| and then find a Tj(kt) inside D (and hence inside G) using

Lemma [3] Once we have a Ty (kt) as a subgraph of G, applying the observation made in the proof sketch
then yields the result.

2 Extremal numbers for bipartite graphs

Note that the Erdés-Stone-Simonovits Theorem works for any graph H whose chromatic number is at least
3. This leaves out the entire class of graphs having chromatic number exactly two. Recall the following:

Lemma 4. A graph G has chromatic number 2 if and only if G is bipartite.

Hence, we are left asking, how do we compute extremal numbers for bipartite graphs?



The answer, unfortunately, is a lot of we don’t know. We do have the following bound for any bipartite
graphs:

Theorem 3. Let H be a bipartite graph having vy vertices. Then there exists a constant ¢ (depending on
H) such that ex(n, H) < en?~ /v,

To prove this bound, we shall make use of the following binomial identity. While we will not prove this
here, you should be able to prove this yourself if you know how to use Janson’s inequality (you can prove
that () is convex in n.

Lemma 5. Let ay,as,...,an be positive integers, with average A = % >>a;. Then Y, (ar) > N(f).

a;

") with a copy of (%) only increases the sum.

That is to say, replacing each (
Proof. For simplicity let’s write r = vg. Notice that if K, , is a subgraph of G, then so is H, since we
may embed H just as we did in the Turd n graphs for the proof of the Erdds-Stone-Simonovits Theorem.

Now, suppose that for each v € V(G), we take S, to be a set of r neighbors of v. Note that if there
exists a set of r vertices, say A, such that for all u,v € A, S,, = S, then we can form a copy of K, , inside
of v having one partite set as A, and the other partite set as S, for any v € A. Hence, it must be that this
construction is impossible.

Therefore, 3, cy () (dr”) < (r —1)(%), since no set in ([f]) can be represented in the sum 7 or more
times. Applying the bound from the previous Lemma, and setting e(G) equal to the number of edges in
G, we thus obtain

PIORESTE

Note that (:f) <n", and (QG(C:)/") > (QG(G)) (use Stirling’s formula, for example). Therefore, we have

n (“G)) < (-1

nr

_yi/r
Solving for e(G), we obtain ¢(G) < “C=1)""52-1/7 Note that the initial fraction is independent of n, but
does depend upon H; it is this fraction that we take to be ¢ in the statement of the theorem. O

At this point, you might think “Awesome, we did it! We got a bound! DONE.” And you’re right to
celebrate, this is useful, sort of. But imagine if H has only a few vertices, say 3. The exponent on n in
this case is n2~1/3 = n5/3. But the only bipartite graph on 3 vertices is the path of length 2, and we know
that the extremal number for this path is |n] 2, which is a far, far cry from n®/3

In fact, there is NO bipartite graph containing a cycle for which ex(n, H) is known. We
know a few of them asymptotically, but we don’t know the constants.

For an example, let’s consider the first nontrivial case: H = Cy. By applying our theorem carefully
(actually, by redoing the analysis in this somewhat special case), we obtain

1 . 1
ex(n,Cy) < §n3/2 + 5



This upper bound is asymptotically tight in SOME cases. Specifically, it is known (analysis compli-
cated) that

1
ex(n,Cy) = 5713/2 + o(n?/?),

in the case that n = p? +p+ 1 for some prime p. (I know, this n looks ridiculous. It comes from analyzing
certain graphs built out of finite fields, which are always of order p* for a prime p.) This construction
is due to Fiiredi, and I'd be happy to show it to you in office hours. And in fact, in a construction due
to Klein, we have that ex(n,Cy) = ©(n?/?), that is, we are asymptotically on the right order here. And
while it is conjectured that the constant 1/2 is correct, we cannot prove it for any n other than some fancy
forms involving primes (like the above).
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