
Math 301: The Erdős-Stone-Simonovitz Theorem and Extremal

Numbers for Bipartite Graphs

Mary Radcliffe

1 The Erdős-Stone-Simonovitz Theorem

Recall, in class we proved Turán’s Graph Theorem, namely

Theorem 1 (Turán’s Theorem). Let k ≥ 3. Then ex(n,Kk) =
⌊
(k−2)n2

2(k−1)

⌋
.

That is to say, if G is a graph having at least
⌊
(k−2)n2

2(k−1)

⌋
+ 1 edges, then G contains Kk as a subgraph.

On the other hand, there exist graphs having
⌊
(k−2)n2

2(k−1)

⌋
edges that do not contain Kk as a subgraph.

Moreover, we showed that the extremal graphs (that is, the graphs achieving the bound) are the complete
balanced (k − 1)-partite graphs (shown in Figure 1). As these will come up again, we shall denote this
graph by Tk−1(n), called a Turán graph.

Our goal for the next few theorems is to extend this result as best we can to other classes of graphs.
First, let’s think about what was special about the Turán graphs. These graphs work for our situation
because we can group the vertices up into k − 1 independent sets, and the Pigeonhole Principle allows us
to say that if a Kk were present, it would have to have two vertices in one of these independent sets (which
is, of course, impossible).

So perhaps, then, what is special about Turán graphs is the independent sets. That is to say, it is
certainly clear that any graph whose vertex set can be written as a union of k − 1 independent sets can
contain no copy of Kk. Perhaps this is the key to unlocking extensions of this extremal number.

So when can a graph be written as a union of k − 1 independent sets?

Lemma 1. Let G be a graph on n vertices. The vertex set of G can be partitioned into k− 1 independent
sets if and only if G can be properly colored with at most k − 1 colors.

The proof of this lemma is essentially trivial. Note that if we properly color the vertices of G, then any
two vertices having the same color must be independent. Taking the partition as exactly the color classes
will yield the result, and vice versa: given a partition as above, we may color each independent set with
one color to obtain a (k − 1)-coloring.

Fundamentally, this is the problem with finding a Kk inside of Tk−1(n): the Turán graph is (k − 1)-
colorable, so any subgraph of Tk−1(n) is also (k− 1)-colorable. But Kk is not. This leads to the following
immediate generalization:

Theorem 2 (Erdős-Stone-Simonovitz Theorem). Let H be a graph with chromatic number χ(H) = k ≥ 3.

Then ex(n,H) ≤ (k−1)n2

2(k−1) + o
(
n2
)
; i.e., the extremal number for H is asymptotically equal to the number

of edges in Tk−1(n).

Furthermore, it should be clear that the extremal graphs will be the Turán graphs. (If that is not clear,
prove it as an exercise. Use induction.)
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Figure 1: The Turán Graph. Here, we assume that |Vi| and |Vj | are sets of vertices, whose sizes differ by
at most 1 for any i, j, and the solid lines between sets of vertices indicate that all edges are present. This
graph is a complete (k−1)-partite graph, in that we have all edges between partition sets, and is balanced
in the sense that the sizes of the vertex partition are balanced.

The proof of this theorem is messy, so before we get into the details, let’s sketch it out. Since we
are looking at an asymptotic result, we actually need to show that for any ε > 0, there exists some N

sufficiently large that if n > N , then ex(n,H) ≤ (k−1)n2

2(k−1) + εn2. Since ε is arbitrarily small, we essentially

have written that ex(n,H) ≤ (k−1)n2

2(k−1) + o
(
n2
)
, just as we wanted.

So here will be our strategy:

1. Choose some small ε.

2. Look at a graph having n vertices and at least (k−1)n2

2(k−1) + εn2 edges.

3. Show that if n is large enough, we can find, as a subgraph here, the complete k-partite graph having
partite sets of size at least t (for any t. We will specify later). Actually, we will show it contains a
copy of Tk(kt) as a subgraph (which is the same thing).

4. Notice that since H is k-colorable, as long as t is larger then the size of each color class, we can embed
h inside Tk(kt), by embedding each color class in one of the partite sets, and then using whichever
edges we need.

5. Realize that these steps are enough to prove the statement: we have shown that in any graph G

having at least (k−1)n2

2(k−1) + εn2 (with n large enough), we can find a copy of H by lazily picking

t = |V (H)|.

6. WIN THE GAME!!!!

Certainly, the difficulty of this strategy lies entirely in Step 3. This will be the bulk of the work in
proving the theorem. Since this part of the proof is hairy, we shall split it up into some lemmas.

Lemma 2. Fix ε > 0, and let G be a graph on n vertices having at least (k−1)n2

2k−2 + εn2 edges. Then G

contains a subgraph D having at least m =
√
ε(k − 1)n vertices, such that the degree of every vertex in D

is at least
(
k−2
k−1 + ε

)
m+ 1.

Proof. We shall produce D using the following algorithm:
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1. Initialize: D0 = G, n0 = n.

2. Given Di, ni: let v ∈ V (Di) be a vertex in Di having degree ≤
(
k−2
k−1 + ε

)
ni

3. Define Di+1 = Di\{v}; that is, Di+1 is obtained from Di by removing the vertex v. Define ni+1 =
|V (Di+1)| = ni − 1 = n− (i+ 1).

4. Repeat steps 2 and 3 until no vertex v satisfies 2.

5. Output Di.

Clearly, this algorithm will terminate eventually, since eventually we will either have a graph whose
vertices all have a large degree, or a graph with no vertices. We’d really like it to be the first thing, so
let’s consider how long the algorithm will run for. To do so, let’s look carefully at the ith step.

Notice that in the (i+ 1)st step, we remove at most
(
k−2
k−1 + ε

)
ni edges from Di. Hence, the subgraph

Di is obtained by removing at most

i−1∑
j=0

(
k − 2

k − 1
+ ε

)
nj =

i−1∑
j=0

(
k − 2

k − 1
+ ε

)
(n− j)

=

(
k − 2

k − 1
+ ε

) i−1∑
j=0

(n− j)

=

(
k − 2

k − 1
+ ε

)(
ni− i(i− 1)

2

)
=

(
k − 2

k − 1
+ ε

)
2n(n− ni)− (n− ni)(n− ni − 1)

2
since i = n− ni

=

(
k − 2

k − 1
+ ε

)
n2 − n2i + n− ni

2

edges from G. Also, the total number of edges in Di is at most
(
ni

2

)
≤ n2

i

2 . Therefore, the total number of
edges in G is at most

n2i
2

+

(
k − 2

k − 1
+ ε

)
n2 − n2i + n− ni

2
.

On the other hand, the hypothesis was that G contains at least (k−1)n2

2(k−1) + εn2 edges. Therefore, it must

be that
(k − 1)n2

2(k − 1)
+ εn2 ≤ n2i

2
+

(
k − 2

k − 1
+ ε

)
n2 − n2i + n− ni

2
.

Therefore, this process must stop whenever the above inequality fails to hold. That is, the process termi-
nates when

(k − 1)n2

2k − 2
+ εn2 >

n2i
2

+

(
k − 2

k − 1
+ ε

)
n2 − n2i + n− ni

2

n2
(

k − 2

2(k − 1)
+ ε− k − 2

2(k − 1)
− ε

2

)
− n

2

(
k − 2

k − 1
+ ε

)
> n2i

(
1

2
− k − 2

2(k − 1)
− ε

2

)
− ni

2

(
k − 2

k − 1
+ ε

)
n2ε− n

(
k − 2

k − 1
+ ε

)
> n2i

(
1

k − 1
− ε
)
− ni

(
k − 2

k − 1
+ ε

)
.

Notice, the left hand side of this inequality is just a constant (when G is fixed, which it is), and the left
hand side is a parabola that decreases when ni decreases. If you use the quadratic formula, you will find

that this inequality is true so long as ni <
√
ε(k − 1)n. That is to say, after at most n

(
1−

√
ε(k − 1)

)
steps, the algorithm must terminate, and thus the result holds.
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Figure 2: The set P defined in the proof of Lemma 3. Note that if we consider a vertex in P , it has a lot
of edges (namely, t edges) into each set Ai. However, the edges need not always be to the same vertices.

Lemma 3. Let ε > 0, k ≥ 1, and let G be a graph on n such that every vertex of G has degree at least(
k−2
k−1 + ε

)
n. Fix t > 0. Then if n is sufficiently large, Tk(kt) is a subgraph of G.

Proof. We shall work by induction on k. Note that the case of k = 1 is trivial, since T1(t) is the empty
graph on t vertices.

Suppose the result is known for k − 1 for any choice of t. Let s =
⌈
t
ε

⌉
. Notice that k−2

k−1 = 1 − 1
k−1 ≤

1 − 1
k−2 , and hence G has sufficiently many edges to apply the induction hypothesis. Choose n large

enough that we can find a copy of Tk−1((k− 1)s) in G. Label the partite sets as A1, A2, . . . , Ak−1, and let
A = A1 ∪A2 ∪ · · · ∪Ak−1. Let W be the set of vertices in V (G) that do not appear in A.

Define P = {v ∈ W | N(v) ∩ Ai ≥ t for every i}; that is, P is the set of vertices that have at least t
edges into each Ai. This is illustrated in Figure 2. Notice that our goal now is to construct a set Bk ⊂ P ,
such that for each i, there is a subset Bi ⊂ Ai with every possible edge between Bk and Bi, and |Bi| = t.
This will be exactly a Tk(kt). We have restricted to P , since these are the only possible vertices to be
included in such a set Bk. See Figure 3.

Most of the rest of the proof comes down to counting. First, let us count the number of nonedges
between W and A.

First, if a vertex v ∈W is not in P , then there exists some i such that the number of edges from v to
Ai is at most t− 1. Hence, the number of nonedges between W and A is at least (|W | − |P |)(s− t+ 1) ≥
(|W | − |P |)(s− t).

On the other hand, the degree of every vertex in G is at least
(
k−2
k−1 + ε

)
n, and hence given any vertex

v, the number of nonedges involving v is at most n−
(
k−2
k−1 + ε

)
n = n

(
1

k−1 − ε
)

. Summing over all vertices

in A, we thus obtain that the number of nonedges between W and A is at most s(k − 1)n
(

1
k−1 − ε

)
.

Taking these two bounds together yields

s(k − 1)n

(
1

k − 1
− ε
)
≥ (|W | − |P |)(s− t).
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Figure 3: The goal of the proof: to find a (size t) subset Bi in each Ai, and a set Bk in P , with all the
edges between Bk and each Bi. Notice that we already have all the edges between Bi and Bj when i 6= j
and both i, j < k, since they are subsets of the Ai sets.

Recalling that s = t
ε and |W | = n− s(k − 1), this yields

t(k − 1)n

(
1

k − 1
− ε
)
≥ (n− s(k − 1)− |P |)(t− εt).

Solving this inequality for |P | and using lots of algebra, we obtain

|P | ≥ n
(
ε(k − 2)

1− ε

)
− s(k − 1).

The important thing here is that |P | is monotonically increasing with n, even as |A| stays the same.
Hence, we may choose |P | as large as we like. Moreover, note that by the pigeonhole principle, as long
as |P | is large enough, we will be able to find a set Bk in P satisfying the desired properties. Hence, by
taking n sufficiently large, we can produce such Bi, and the result is demonstrated.

Note that these two lemmas immediately prove the Erdős-Stone-Simonovitz theorem, as we can first
find a good subgraph D in G by Lemma 2, and then find a Tk(kt) inside D (and hence inside G) using
Lemma 3. Once we have a Tk(kt) as a subgraph of G, applying the observation made in the proof sketch
then yields the result.

2 Extremal numbers for bipartite graphs

Note that the Erdős-Stone-Simonovits Theorem works for any graph H whose chromatic number is at least
3. This leaves out the entire class of graphs having chromatic number exactly two. Recall the following:

Lemma 4. A graph G has chromatic number 2 if and only if G is bipartite.

Hence, we are left asking, how do we compute extremal numbers for bipartite graphs?
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The answer, unfortunately, is a lot of we don’t know. We do have the following bound for any bipartite
graphs:

Theorem 3. Let H be a bipartite graph having vH vertices. Then there exists a constant c (depending on
H) such that ex(n,H) ≤ cn2−1/vH .

To prove this bound, we shall make use of the following binomial identity. While we will not prove this
here, you should be able to prove this yourself if you know how to use Janson’s inequality (you can prove
that

(
n
r

)
is convex in n.

Lemma 5. Let a1, a2, . . . , aN be positive integers, with average A = 1
N

∑
ai. Then

∑(
ai
r

)
≥ N

(
A
r

)
.

That is to say, replacing each
(
ai
r

)
with a copy of

(
A
r

)
only increases the sum.

Proof. For simplicity let’s write r = vH . Notice that if Kr,r is a subgraph of G, then so is H, since we
may embed H just as we did in the Turá n graphs for the proof of the Erdős-Stone-Simonovits Theorem.

Now, suppose that for each v ∈ V (G), we take Sv to be a set of r neighbors of v. Note that if there
exists a set of r vertices, say A, such that for all u, v ∈ A, Su = Sv, then we can form a copy of Kr,r inside
of v having one partite set as A, and the other partite set as Sv for any v ∈ A. Hence, it must be that this
construction is impossible.

Therefore,
∑
v∈V (G)

(
dv
r

)
≤ (r − 1)

(
n
r

)
, since no set in

(
[n]
r

)
can be represented in the sum r or more

times. Applying the bound from the previous Lemma, and setting e(G) equal to the number of edges in
G, we thus obtain

∑
v∈V (G)

(
dv
r

)
≤ (r − 1)

(
n

r

)

n

( 1
n

∑
dv

r

)
≤ (r − 1)

(
n

r

)
n

(
2e(G)/n

r

)
≤ (r − 1)

(
n

r

)

Note that
(
n
r

)
≤ nr, and

(
2e(G)/n

r

)
≥
(

2e(G)
nr

)r
(use Stirling’s formula, for example). Therefore, we have

n

(
2e(G)

nr

)r
≤ (r − 1)nr.

Solving for e(G), we obtain e(G) ≤ r(r−1)1/r
2 n2−1/r. Note that the initial fraction is independent of n, but

does depend upon H; it is this fraction that we take to be c in the statement of the theorem.

At this point, you might think “Awesome, we did it! We got a bound! DONE.” And you’re right to
celebrate, this is useful, sort of. But imagine if H has only a few vertices, say 3. The exponent on n in
this case is n2−1/3 = n5/3. But the only bipartite graph on 3 vertices is the path of length 2, and we know
that the extremal number for this path is bnc 2, which is a far, far cry from n5/3.

In fact, there is NO bipartite graph containing a cycle for which ex(n,H) is known. We
know a few of them asymptotically, but we don’t know the constants.

For an example, let’s consider the first nontrivial case: H = C4. By applying our theorem carefully
(actually, by redoing the analysis in this somewhat special case), we obtain

ex(n,C4) ≤ 1

2
n3/2 +

1

2
n.
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This upper bound is asymptotically tight in SOME cases. Specifically, it is known (analysis compli-
cated) that

ex(n,C4) =
1

2
n3/2 + o(n3/2),

in the case that n = p2 + p+ 1 for some prime p. (I know, this n looks ridiculous. It comes from analyzing
certain graphs built out of finite fields, which are always of order pk for a prime p.) This construction
is due to Füredi, and I’d be happy to show it to you in office hours. And in fact, in a construction due
to Klein, we have that ex(n,C4) = Θ(n3/2), that is, we are asymptotically on the right order here. And
while it is conjectured that the constant 1/2 is correct, we cannot prove it for any n other than some fancy
forms involving primes (like the above).
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