DEPARTMENT OF MATHEMATICAL SCIENCES CARNEGIE MELLON UNIVERSITY

Math 21-259 Calculus in 3D Practice Problem from Chapter 13

What sections to expect from Chapter 13 in exam? Sections 13.1 - 13.8.

In particular, you should be able to answer the following questions.

- 1. How to Recognize/Sketch Vector Fields?
- 2. How to check if the given vector field is a gradient field or not? If a gradient field then how to find a potential function?
- 3. How to compute Line Integrals?
 - (a) Directly.
 - (b) Using Fundamental Theorem of Line integrals.
 - (c) Using Green's theorem (using double integral).
 - (d) Stokes' Theorem (using surface integral).
- 4. Application of Green's Theorem in computing area of bounded regions.
- 5. Verify Green's theorem.
- 6. How to compute Surface Area?
- 7. How to compute Surface Integrals?
 - (a) Directly
 - (b) Using Stokes' theorem.
- 8. Verify Stokes Theorem.

Practice Problems including Homework Problems

1. Evaluate the line integral $\int_C (y/x) \, \mathrm{d}s, \ C: x=t^4, y=t^3, \ 1/2 \le t \le 1.$ (HW)

Solution: Check out Homework solutions.

2. Evaluate the line integral $\int_C xe^y dx$, C is the arc of the curve $x=e^y$ from (1, 0) to (e, 1).

$$\widehat{\Re}(t) = e^{t} \hat{i} + t \hat{j}, \quad 0 \le t \le 1$$

$$\int x e^{y} dy = \int e^{t} e^{t} e^{t} dt$$

$$C = \int e^{3t} dt = \left[\frac{e^{3t}}{3}\right]_{0}^{1}$$

$$= \left[\frac{e^{3-1}}{3}\right]_{0}^{4}$$

3. Evaluate the line integral $\int_C \sin x \, dx + \cos y \, dy$, C consists of the top half of the circle $x^2 + y^2 = 1$ from (1, 0) to (-1, 0) and the line segments from (-1, 0) to (-2, 3). (HW)

Solution: Check out Homework solutions.

4. Find the work done done by the force field $\mathbf{F}(x,y) = x \sin y \mathbf{i} + y \mathbf{j}$ on a particle that moves along the parabola $y = x^2$ from (-1, 1) to (2, 4). (HW)

5. An object, acted on by various forces, moves along the parabola $y=3x^2$ from the origin to the point (1, 3). One of the forces acting on the object is $\mathbf{F}(x,y) = x^3\mathbf{i} + y\mathbf{j}$. Calculate the work done by F.

$$P(x,y) = x^3$$
 and $Q(x,y) = y$

Note: Py = 0 = Qx => F is a gradient field.

Find f so that $\vec{F} = \nabla f$.

$$f_x = x^3$$
 and $f_y = y$

$$\Rightarrow$$
 $f(x,y) = \frac{x^4}{4} + h(y)$ and $f_y = h'(y)$

But $f_y = y = h'(y) \Rightarrow h(y) = \frac{y^2}{2} + C$

$$f(x,y) = \frac{x^{4} + y^{2} + C}{4}$$

$$= f(1,3) - f(0,0)$$
6. Determine the work done by the force $F(x,y,z) = xyi + 2j + 4zk$ along the circular helix $G: F(y) = \cos yi + \sin yi + ab$, from $0 + 2i$

helix $C: \mathbf{r}(u) = \cos u\mathbf{i} + \sin u\mathbf{j} + u\mathbf{k}$, from u = 0 to $u = 2\pi$.

Nork done by
$$\vec{F} = \int_{0}^{2\pi} \vec{F}(\vec{\pi}(u)) \cdot \vec{\pi}'(u) du$$

$$= \int_{0}^{2\pi} \langle \cos u \sin u, 2, 4u \rangle \cdot \langle -\sin u, \cos u, 1 \rangle du$$

$$= \int_{0}^{2\pi} -\cos u \sin^{2} u + 2\cos u + 4u du$$

$$= \left[-\sin^{3} u + 2\sin u + 2u^{2} \right]_{0}^{2\pi}$$

$$= \left[8\pi^{2} \right] A_{M}$$

8. Integrate $h(x, y, z) = \cos x \mathbf{i} + \sin y \mathbf{j} + y z \mathbf{k}$ over the indicated path:

(a) The line segment from
$$(0, 0, 0)$$
 to $(2, 3, -1)$.

C:
$$\Re(t) = 2t\hat{c} + 3t\hat{j} - t\hat{k}$$
, $0 \le t \le 1$

$$\iint_{C} d\vec{r} = \int_{0}^{1} 2\cos 2t + 3\sin 3t + 3t^{2} dt$$

$$= \left[\sin 2t - \cos 3t + t^{3} \right]_{0}^{1}$$

$$= \sin 2 - \cos 3 + 1 + 1$$

$$= \left[2 + \sin 2 - \cos 3 \right] A_{yy}$$

(b)
$$\mathbf{r}(u) = u^2 \mathbf{i} - u^3 \mathbf{j} + u \mathbf{k}$$
, u in [0, 1].

$$\frac{fh \cdot di}{c} = \int_{0}^{2u \cos u^{2} + 3u^{2} \sin u^{3} - u^{4}} du$$

$$= \left[\frac{\sin u^{2} - \cos u^{3} - \frac{u^{5}}{5}}{5} \right]_{0}^{1}$$

$$= \frac{\sin 1 - \cos 1 - \frac{1}{5} + 1}{5}$$

$$= \frac{4 + \sin 1 - \cos 1}{5} \xrightarrow{\text{Ams}}$$

9. (a) Determine whether or not $\mathbf{F}(x,y) = (xy\cos xy + \sin xy)\mathbf{i} + (x^2\cos xy)\mathbf{j}$ is a conservative vector field. If it is, then a function f such that $\mathbf{F} = \nabla f$. (HW)

Solution: Check out Homework solutions. : $f(x,y) = x \sin xy + C$.

(b) Compute the line integral of F over the curve $C: \mathbf{r}(t) = \sqrt{t}\mathbf{i} + (1+t^3)\mathbf{j}, \ 0 \le t \le 1.$

$$\int \vec{F} \cdot d\vec{r} = f(\vec{\pi}(1)) - f(\vec{\pi}(0)) \left(\begin{array}{c} \text{Fundamental} \\ \text{Heorem of line Integ} \end{array} \right) \\
= f(1, 2) - f(0, 1) \\
= \left[\begin{array}{c} \sin 2 \end{array} \right] A_{12} .$$

(c) Compute the line integral of F over the curve $C: \mathbf{r}(t) = (t^2 + 3)\mathbf{i} + \sin(\frac{1}{2}\pi t)\mathbf{j}$, $0 \le t \le 1$.

$$\int_{C}^{F} d\vec{x} = -f(3,0) + f(4,1)$$

= $\left[+ 4 \sin 4 \right] + Ans$

10. (a) Determine whether or not $F(x,y) = \frac{y^2}{1+x^2}i + \frac{2y}{\arctan x}j$ is a conservative vector field. If it is, then a function f such that $F = \nabla f$. (HW)

Solution: Check out Homework solutions.

(b) Compute the line integral of **F** over the curve $C: \mathbf{r}(t) = t^2\mathbf{i} + 2t\mathbf{j}, \ 0 \le t \le 1$. (HW)

Solution: Check out Homework solutions.

11. Find the work done by the force field $\mathbf{F}(x,y) = e^{-y}\mathbf{i} - xe^{-y}\mathbf{j}$ in moving an object from P(0, 1) to Q(2, 0). (HW)

12. (a) Show that $\vec{h}(x,y) = (3x^2 + 12xy + 3y^2)\mathbf{i} + (4y^3 + 6x^2 + 6xy)\mathbf{j}$ satisfies the conditions to be a gradient.

$$P(x,y) = 3x^2 + 12xy + 3y^2$$
 and $Q(x,y) = 4y^3 + 6x^2 + 6xy$

Noti: Qx = Py! = Tier a gradient field.

(b) Find a function f(x, y) so that $h = \nabla f$.

$$f_x = 3x^2 + 12xy + 3y^2$$
 and $f_y = 4y^3 + 6x^2 + 6xy$

$$\Rightarrow$$
 $f(x_1y) = x^3 + 6x^2y + 3xy^2 + hly) and$

$$f_{y} = 6x^{2} + 6xy + h'(y)$$
But $f_{y} = 4y^{3} + 6x^{2} + 6xy \Rightarrow h'(y) = y^{4} + C$

$$\Rightarrow |f(x,y) = x^{3} + 6x^{2}y + 3xy^{2} + y' + C|$$

(c) Let C be the curve given by $\mathbf{r}(t) = (t + \cos(t))\mathbf{i} + (\sin(t) + \cos^3(t))\mathbf{j}$, $0 \le t \le \pi/2$, and compute

$$\int_C \mathbf{h}.\mathrm{d}\mathbf{r}.$$

$$\int_{C} \vec{h} \cdot d\vec{x} = \vec{f}(\vec{x}(\pi/2)) - \vec{f}(\vec{x}(0))$$

$$= f((\vec{x}, 1)) - f((1, 1))$$

$$= (\vec{x}^{3}) + (\vec{$$

13. Compute $\int_C \mathbf{G} \cdot d\mathbf{r}$, where $\mathbf{G}(x,y) = (2xy + e^x - 3)\mathbf{i} + (x^2 - y^2 + \sin y)\mathbf{j}$ and C is the ellipse $4x^2 + 9y^2 = 36$.

Note that $P = 2xy + e^x - 3$

 $Q = \chi^2 - y^2 + \sin y$

Step I: 1s q a gradient field?

 $P_{x} = 2x = Q_{x}$

So, the answer is Yes!

Step I: 1s C a closed cuive?

Yes

 $\int_{C} \vec{q} \cdot d\vec{r} = 0$

by Fundamental theorem
of line Inlegial

- 14. Evaluate the line integral by two methods: (a) directly and (b) using Green's Theorem. (HW)
 - (a) $\oint_C xy^2 dx + x^3 dy$, C is the rectangle with vertices (0, 0), (2, 0), (2, 3), and (0, 3).

Solution: Check out Homework solutions.

(b) $\oint_C x \, dx + y \, dy$, C consists of the line segments from (0, 1) to (0, 0) and from (0, 0) to (1, 0), and the parabola $y = 1 - x^2$ from (1, 0) to (0, 1).

Solution: Check out Homework solutions.

- 15. Use Green's theorem to evaluate the following line integrals:
 - (a) $\int_C xe^{-2x} dx + (x^4 + 2x^2y^2) dy$, C is the boundary of the region between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$. (HW)

Solution: Check out Homework solutions.

(b) $\int_C y^2 \cos x \, dx + (x^2 + 2y \sin x) \, dy$, C is the triangle from (0, 0) to (2, 6) to (2, 0) to (0, 0). (HW)

16. Use Green's theorem to evaluate $\int_C y^2 dx + (3x + 2xy) dy$ where C is the circle of radius 2 oriented counterclockwise.

$$P(x,y) = y^2$$
 and $Q(x,y) = 3x + 2xy$
 $P_y = 2y$ and $Q_x = 3 + 2y$

$$\int_{C}^{y} y = 2y \text{ and } dx = 3$$

$$\int_{C}^{y^{2}} dx + (3x + 2xy) dy = \iint_{D}^{(3+2y)} -2y dA$$

$$= \iint_{D} 3 dA = 3$$

$$= 3 \iint_{D} dA$$

 $=3\left(\text{area of D}\right)$ $=3\pi(2)^{2}=\boxed{12\pi}$ 17. Compute the integral of the function $\mathbf{F}(x,y)=(e^{x^{2}}+2x^{2}-4x+y)\mathbf{i}+(\sin y+x+3y+2)\mathbf{j}$ over the curve $C:r(\theta)=\sin\theta,\ 0\leq\theta\leq\pi$.

His is in poleu coordinates"

Note
$$X = 92\cos\theta = \sin\theta\cos\theta$$
 and $y = 2\sin\theta = \sin\theta\sin\theta = \sin^2\theta$
 $y = 2\sin\theta\cos\theta + \sin^2\theta$
 $y = \sin\theta\cos\theta + \sin^2\theta$

(Note! We didn't even require to compute f since)

the given curve siss à closed curve.

- 18. Let C be the circle of radius 2 centered at (2,3) oriented counterclockwise.
 - (a) Find a parameterization of C using $0 \le t \le 2\pi$.

$$x(t) = 2 \cos t + 2$$

 $y(t) = 2 \sin t + 3$

死(t)=
$$(2\cos t + 2)\hat{i} + (2\sin t + 3)\hat{j}$$
, $\theta \le t \le 2\pi$.

(b) Use your parameterization of C to express

$$\int_C = \int_C (4xy + 2y) dx + (2x^2) dy$$

as an integral dt.

$$I = \iint \left(\frac{4(2\omega st + 2)(2\sin t + 3) + 2(2\sin t + 3)}{(2\cos t + 2)^2(2\cos t)} \right) dt$$

$$= \iint \left(\frac{4(2\omega st + 2)(2\sin t + 3)}{(2\cos t + 2)^2(2\cos t)} \right) dt$$

$$= \iint \left(\frac{4(2\omega st + 2)(2\sin t + 3)}{(2\cos t + 2)^2(2\cos t)} \right) dt$$

$$= \iint \left(\frac{4(2\omega st + 2)(2\sin t + 3)}{(2\cos t + 2)^2(2\cos t + 2)} \right) dt$$

$$= \iint \left(\frac{4(2\omega st + 2)(2\sin t + 3)}{(2\cos t + 2)^2(2\cos t + 2)} \right) dt$$

$$= \iint \left(\frac{4(2\omega st + 2)(2\sin t + 3) + 2(2\sin t + 3)}{(2\cos t + 2)^2(2\cos t + 2)} \right) dt$$

$$= \iint \left(\frac{4(2\omega st + 2)(2\sin t + 3) + 2(2\sin t + 3)}{(2\cos t + 2)^2(2\cos t + 2)} \right) dt$$

$$= \iint \left(\frac{4(2\omega st + 2)(2\sin t + 3) + 2(2\sin t + 3)}{(2\cos t + 2)^2(2\cos t + 2)} \right) dt$$

$$= \iint \left(\frac{4(2\omega st + 2)(2\sin t + 3) + 2(2\sin t + 3)}{(2\cos t + 2)^2(2\cos t + 2)} \right) dt$$

$$= \iint \left(\frac{4(2\omega st + 2)(2\sin t + 3) + 2(2\sin t + 3)}{(2\cos t + 2)^2(2\cos t + 2)} \right) dt$$

$$= \iint \left(\frac{4(2\omega st + 2)(2\cos t + 2) + 2(2\cos t + 2)}{(2\cos t + 2)(2\cos t + 2)} \right) dt$$

$$= \iint \left(\frac{4(2\omega st + 2)(2\cos t + 2) + 2(2\sin t + 3)}{(2\cos t + 2)(2\cos t + 2)} \right) dt$$

$$= \iint \left(\frac{4(2\omega st + 2)(2\cos t + 2) + 2(2\sin t + 3)}{(2\cos t + 2)(2\cos t + 2)} \right) dt$$

$$= \iint \left(\frac{4(2\omega st + 2)(2\cos t + 2) + 2(2\sin t + 3)}{(2\cos t + 2)(2\cos t + 2)} \right) dt$$

$$= \iint \left(\frac{4(2\omega st + 2)(2\cos t + 2) + 2(2\cos t + 2) + 2(2\cos t + 2)}{(2\cos t + 2)(2\cos t + 2)} \right) dt$$

$$= \iint \left(\frac{4(2\omega st + 2)(2\cos t + 2) + 2(2\cos t + 2) + 2(2\cos t + 2)}{(2\cos t + 2)(2\cos t + 2)} \right) dt$$

$$= \iint \left(\frac{4(2\omega st + 2)(2\cos t + 2) + 2(2\cos t + 2)$$

(c) Use Green's theorem to compute this integral.

$$I = \iint (4x) - (4x + 2) dA$$

$$= -2 (anca of circle)$$

$$= -2 \pi (2)^{2} = -8 \pi Am$$

- 19. Use Green's theorem to find the area of the following bounded regions.
 - (a) Region bounded by the astroid $n(u) = \cos^3 u \mathbf{i} + \sin^3 u \mathbf{j}$, $0 \le u \le 2\pi$.

Area =
$$\int -y \, dx + x \, dy = \int -\frac{\sin^3 u (3\cos^2 u (-\sin u))}{2} \, du$$

= $\int \frac{3}{2} \left(\cos^2 u \sin^2 u + \cos^2 u \sin^2 u \right) \, du$
= $\int \int \frac{3}{2} \sin^2 u \cos^2 u \, du = \int \frac{3}{8} \sin^2 2u \, du$
= $\int \frac{3}{2} \left(1 - \cos^2 4u \right) \, du = \frac{3}{16} \left[u - \sin^4 4 \right] = \frac{3}{8} \pi$

(b) Region in the second quadrant bounded by the ellipse $4x^2 + 9y^2 = 36$.

Area =
$$\int -y \, dx + x \, dy$$

 $C_1 + C_2 + C_3$
 $X(t) = 3 \cos t$ and $y(t) = 2 \sin t$ $T \le t \le T$

On C₁:
$$0 \le y \le 2$$
 and $x = 0$.

A $\left(-\frac{y \, dx + x \, dy}{2} \right) = 0$.

On
$$C_2$$
: $x(t) = 3\omega st$ and $y(t) = 2\sin t$, $\frac{\pi}{2} \le t \le \pi$

$$\int_{C_2}^{C_2} \frac{x(t)}{2} = 3\omega st$$
 and $y(t) = 2\sin t$, $\frac{\pi}{2} \le t \le \pi$

$$\int_{C_2}^{C_2} \frac{y dx + x dy}{2} = t \int_{\pi/2}^{6} \frac{\sin^2 t}{2} + 6\omega s^2 t$$
 of $t = 3(\frac{\pi}{2})$

On (3)
$$\times$$
 in from -3 to 0 and $y = 0$.

$$\int_{3}^{2} -y \, dx + x \, dy = 0 \Rightarrow Area = \frac{3\pi}{2} Area$$

- 19. Use Green's theorem to find the area of the following bounded regions.
 - (a) Region bounded by the astroid $u(u) = \cos^3 u \mathbf{i} + \sin^3 u \mathbf{j}$, $0 \le u \le 2\pi$.

Area =
$$\int -y \, dx + x \, dy = \int -\frac{\sin^3 u (3\cos^2 u (-\sin u))}{2} \, du$$

= $\int \frac{3}{2} \left(\cos^2 u \sin^2 u + \cos^2 u \sin^2 u \right) \, du$
= $\int \frac{3}{2} \left(\cos^2 u \sin^2 u + \cos^2 u \sin^2 u \right) \, du$
= $\int \int \frac{3}{2} \sin^2 u \cos^2 u \, du = \int \frac{3}{2} \sin^2 2u \, du$
= $\int \frac{3}{2} \left(1 - \cos^2 4u \right) \, du = \frac{3}{16} \left[u - \sin^2 4u \right] = \frac{3}{8} \pi$

(b) Region in the second quadrant bounded by the ellipse $4x^2 + 9y^2 = 36$.

Area =
$$\int -y \, dx + x \, dy$$

$$C_1 + C_2 + C_3$$

$$x(t) = 3 \cos t \text{ and } y(t) = 2 \sin t \quad \underline{\sigma} \le t \le 7$$

On C₁:
$$0 \le y \le 2$$
 and $x = 0$.

A $\int -\frac{y \, dx + x \, dy}{2} = 0$.

On
$$C_2$$
: $x(t) = 3\omega st$ and $y(t) = 2\sin t$, $\frac{\pi}{2} \le t \le \pi$

$$\int_{C_2}^{C_2} \frac{x(t)}{2} = 3\omega st \text{ and } y(t) = 2\sin t$$
, $\frac{\pi}{2} \le t \le \pi$

$$\int_{C_2}^{C_2} \frac{y dx + x dy}{2} = t \int_{\pi/2}^{\pi/2} \frac{6\sin^2 t + 6\omega s^2 t}{2} dt = 3(\frac{\pi}{2})$$

On (3)
$$\times$$
 in from -3 to 0 and $y = 0$.

$$\int_{3}^{2} -y \, dx + x \, dy = 0 \implies Area = \frac{3\pi}{2}$$

20. (a) Use Green's theorem to show that if is the region enclosed by a simple closed curve C, then $\oint_C (x+2y) dx + (3x-4y) dy = area(\Omega)$.

P= x+2y and Q= 3x-4y

Note that:
$$\oint_C Pdx + Qdy = \iint_C (Qx - Py) dA$$

$$C = \iint_C (3-2) dA = area(x)$$

- (b) What is the value of the integral if
 - i. C is the circle: $(x-1)^2 + (y-2)^2 = 4$ and

From (a)
$$\oint_C (x+2y) dx + (3x-4y) dy = area of the disk of radius 2

= 4π

Ary$$

C

ii. C is the path formed by joining the four points: A(-1, 0), B(1, 0), C(1, 1), D(-1, 1).

From (a), the value of integral =
$$\boxed{2}$$
= area (Γ)
= area of parallelogram
= $\frac{1}{2}$
= $\frac{1}{2}$
 $\frac{1}{2}$

iii. C is the path formed by the y-axis, the line y = 1, and the line $y = \frac{1}{2}x$.

From (a), the value of the integral
$$\frac{y}{y}$$
= area of the triangle
= $\frac{1}{2}(1)(\frac{2}{2}) = \frac{y}{y}$
Arrs

21. Verify Green's theorem for the vector field $\mathbf{F}(x,y) = (1+10xy+y^2) \, \mathrm{d}x + (6xy+5x^2) \, \mathrm{d}y$ and the curve C which is the square with vertices (0,0), (a,0), (a,a), (0,a).

22. Find the curl and the divergence of the vector field

$$\mathbf{F}(x,y) = \frac{x}{x^2 + y^2 + z^2} \mathbf{i} + \frac{y}{x^2 + y^2 + z^2} \mathbf{j} + \frac{z}{x^2 + y^2 + z^2} \mathbf{k}.$$

(HW)

Solution: Check out Homework solutions.

23. Determine whether or not the vector field $\mathbf{F} = e^z \mathbf{i} + \mathbf{j} + x e^z \mathbf{k}$ is conservative. If it is conservative, find a function f such that $\mathbf{F} = \nabla f$. (HW)

Solution: Check out Homework solutions.

24. Find the surface area of the part of the plane 2x + 5y + z = 10 that lies inside the cylinder $x^2 + y^2 = 9$. (HW 15)

Solution: Check out Homework solutions.

25. Find the surface area of the part of the surface $z = 1 + 3x + 2y^2$ that lies above the triangle with vertices (0, 0), (0, 1), and (2, 1). (HW 15)

Solution: Check out Homework solutions.

26. Find the surface area of the part of the hyperbolic paraboloid $z = y^2 - x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$. (HW 15 – example done in class)

Solution: Check out Homework solutions or class notes.

27. Evaluate the surface integral $\iint_S \sqrt{1+y^2+z^2} \, dS$, where S is the helicoid with vector equation $\mathbf{r}(u,v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + v \mathbf{k}, \ 0 \le u \le 1, \ 0 < v < \pi$. (HW 15)

28. Evaluate the surface integral $\iint_S xy \, dS$, where S is the triangular region with vertices (1, 0, 0), (0, 2, 0), and (0, 0, 2). (HW 15)

Solution: Check out Homework solutions.

29. Evaluate the surface integral $\iint_S yz \, dS$, where S is the part of the plane x + y + z = 1 that lies in the first octant. (HW 15)

Solution: Check out Homework solutions.

30. Evaluate the surface integral $\iint_S xyz \, dS$, where S is the part of the sphere $x^2 + y^2 + z^2 = 1$ that lies above the cone $z = \sqrt{x^2 + y^2}$. (HW 15)

Solution: Check out Homework solutions.

31. Evaluate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = x\mathbf{i} - z\mathbf{j} + y\mathbf{k}$ and S is the part of the sphere $x^2 + y^2 + z^2 = 4$ in the first octant, with orientation towards the origin. (HW 15)

Solution: Check out Homework solutions.

32. Evaluate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = y\mathbf{j} - z\mathbf{k}$ and S consists of the paraboloid $y = x^2 + z^2$, $0 \le y \le 1$, and the disk $x^2 + z^2 \le 1$, y = 1. (HW 15)

Solution: Check out Homework solutions.

33. Evaluate the surface integral $\iint_S \mathbf{F}.d\mathbf{S}$, where $\mathbf{F}(x,y,z) = y\mathbf{i} + (z-y)\mathbf{j} + x\mathbf{k}$ and S is the surface of the tetrahedron with vertices (0,0,0), (1,0,0), and (0,0,1).(HW 15)

- 34. Use Stokes' theorem, that is, line integrals to evaluate $\iint_S \mathbf{F}.d\mathbf{S}$ where
 - (a) $\mathbf{F}(x,y,z)=x^2e^{yz}\mathbf{i}+y^2e^{xz}\mathbf{j}+z^2e^{xy}\mathbf{k}$ and S is the hemisphere $x^2+y^2+z^2=4,\ z\geq 0$, oriented upwards. (HW 15)

Solution: Check out Homework solutions.

(b) $F(x, y, z) = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$ and S is the part of the paraboloid $z = 9 - x^2 - y^2$ that lies above the plane z = 5, oriented upward. (HW 15)

Solution: Check out Homework solutions.

- 35. Use Stokes' theorem, that is, surface integrals to evaluate $\int_C \mathbf{F}.d\mathbf{r}$ where
 - (a) $F(x, y, z) = e^{-x}i + e^{x}j + e^{z}k$, and C is the boundary of the part of the plane 2x + y + 2z = 2 in the first octant oriented counterclockwise as viewed from above. (HW 15)

Solution: Check out Homework solutions.

(b) $\mathbf{F}(x, y, z) = xy\mathbf{i} + 2z\mathbf{j} + 3y\mathbf{k}$, and C is the curve of intersection of the plane x + z = 5 and the cylinder $x^2 + y^2 = 9$. (HW 15)

Solution: Check out Homework solutions.

36. Verify Stokes' theorem for the vector field $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + xyz\mathbf{k}$ and S is the part of the plane 2x + y + z = 2 that lies in the first octant oriented upward. (HW 15)