Exam I Review Problem Set
 Math 21-259

1. Calculate the length of the line segment AB and find the midpoint where $\mathrm{A}(2,0,-1)$ and $\mathrm{B}(0,-1,1)$.
2. Find an equation for the plane through $(-5,-2,6)$ that is parallel to the $x y$-plane.
3. Determine if the following equation represents a sphere and if so, find its center and radius: $x^{2}+y^{2}+z^{2}+10 x+4 y-12 z+56=0$.
4. Describe the region $\Omega=\left\{(x, y, z): x^{2}+y^{2} \leq 25,-3 \leq z \leq 3\right\}$ in words.
5. Find α given that $3 \mathbf{i}+6 \mathbf{j}-7 \mathbf{k}$ and $\alpha \mathbf{i}-36 \mathbf{j}+42 \mathbf{k}$ are parallel.
6. Find all numbers x for which the angle between $\mathbf{c}=x \mathbf{i}+\mathbf{j}+3 \mathbf{k}$ and $\mathbf{d}=\mathbf{i}+1 x \mathbf{j}+3 \mathbf{k}$ is $\frac{\pi}{3}$.
7. Find the scalar projection of the vector $\mathbf{a}=\mathbf{i}+\sqrt{3} \mathbf{k}$ onto the vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$.
8. Find the vector projection of the vector $\mathbf{a}=2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}$ onto the vector $\mathbf{b}=4 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$.
9. Calculate the following:
(a) $\mathbf{j} \cdot(2 \mathbf{i} \times 3 \mathbf{k})$
(b) $(\mathbf{i}-\mathbf{j}+3 \mathbf{k}) \cdot(2 \mathbf{i} \times 3 \mathbf{k})$
(c) $(\mathbf{i}-\mathbf{j}+3 \mathbf{k}) \times(2 \mathbf{i}+\mathbf{j})$
(d) The volume of the parallelopiped with the given edges. $\mathbf{i}-2 \mathbf{j}+\mathbf{k}, 2 \mathbf{j}-\mathbf{k}, \mathbf{i}+\mathbf{j}-4 \mathbf{k}$.
10. A vector parametrization for the line that passes through $\mathrm{P}(2,4,0)$ and is parallel to the line $\mathbf{r}(t)=(\mathbf{i}-\mathbf{j})+t(3 \mathbf{i}-\mathbf{k})$ is given by:
(a) $\mathbf{r}(t)=2 \mathbf{i}+4 \mathbf{j}+t(\mathbf{i}-\mathbf{k})$
(b) $\mathbf{r}(t)=2 \mathbf{i}+4 \mathbf{j}-t(3 \mathbf{i}-\mathbf{k})$
(c) $\mathbf{r}(t)=2 \mathbf{i}+4 \mathbf{j}+t(\mathbf{i}+\mathbf{k})$
(d) $\mathbf{r}(t)=2 \mathbf{i}+4 \mathbf{j}+t(3 \mathbf{i}+\mathbf{k})$
(e) None of the above.
11. Give a vector parametrization for the line that passes through $\mathrm{P}(1,2,-4)$ and is parallel to the line: $2(x-1)=3(y-2)=6(z+4)$
(a) $\mathbf{i}+2 \mathbf{j}-4 \mathbf{k}+t(2 \mathbf{i}+3 \mathbf{j}+6 \mathbf{k})$
(b) $2 \mathbf{i}-6 \mathbf{j}+24 \mathbf{k}+t(2 \mathbf{i}+3 \mathbf{j}+6 \mathbf{k})$
(c) $\mathbf{i}+2 \mathbf{j}-4 \mathbf{k}-t(3, \mathbf{i}+2 \mathbf{j}+\mathbf{k})$
(d) $\mathbf{i}+2 \mathbf{j}-4 \mathbf{k}+t(3 \mathbf{i}-2 \mathbf{j}-\mathbf{k})$
(e) None of the above.
12. Find a vector parametrization for the line segment that begins at (2, 7, -1) and ends at $(4,2,3)$.
13. Determine whether the given two lines intersect and if they do, find the point and the angle of intersection.

$$
l_{1}: \mathbf{r}_{1}(t)=\mathbf{i}+t \mathbf{j}, \quad l_{2}: \mathbf{r}_{2}(t)=\mathbf{j}+u(\mathbf{i}+\mathbf{j})
$$

14. Find the scalar parametric equation of the line that passes through $\mathrm{P}(1,2,-4)$ and is parallel to the line: $l: \mathbf{r}_{1}(t)=\mathbf{i}+t \mathbf{j}$. How about the symmetric form?
15. Find the distance from the point $\mathrm{P}(1,0,2)$ to the line that passes through the origin and is parallel to $2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$.
16. Find an equation of a plane that passes through the point $\mathrm{P}(2,3,4)$ and is perpendicular to $2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$.
17. Find an equation of a plane that passes through the point $\mathrm{P}(1,3,1)$ and contains the line $l: x=t, y=t, z=-2+t$.
18. Find an equation of a plane that passes through the points $\mathrm{P}(1,0,1), \mathrm{Q}(2,1,0), \mathrm{R}(1$, $1,1)$.
19. Find the angle between the planes $x-y+z-1=0,2 x+y+z=-1$.
20. Find the distance from the point $\mathrm{P}(3,-5,2)$ to the plane $8 x-2 y+z=5$.
21. Given an equation of a plane $x-2 y+z=5$. Which of the following is true about the points $\mathrm{A}(2,1,1)$ and $\mathrm{B}(2,-1,1)$?
(a) Both A and B lie on the same side of the plane
(b) A and B lie of the opposite sides of the plane
(c) Both the points A and B lie on the plane
(d) The point A lie on the plane and B outside the plane
(e) The point B lie on the plane and A outside the plane
22. Find the domain of the function $f(t)=t \mathbf{i}+\sqrt{(} t+1) \mathbf{j}-e^{t} \mathbf{k}$ and check for its continuity. Also, find $f^{\prime}(t)$ and $\int_{0}^{1} f(t) d t$.
23. Find $f(t)$ given that $f^{\prime}(t)=\sin t \mathbf{i}+3 t^{2} \mathbf{j}$ and $f(0)=\mathbf{i}-\mathbf{k}$.
24. Find $\lim _{t \rightarrow 0} 3\left(t^{2}-1\right) \mathbf{i}+\cos t \mathbf{j}+\frac{t}{|t|} \mathbf{k}$.
25. Find the points on the curve $\mathbf{r}(t)$ at which $\mathbf{r}(t)$ and $\mathbf{r}^{\prime}(t)$ have opposite directions.

$$
\mathbf{r}(t)=5 t \mathbf{i}+\left(3+t^{2}\right) \mathbf{j}
$$

26. Find a unit tangent vector and the principal normal vector (which is sometimes also referred as unit normal vector) to the curve $\mathbf{r}(t)=\cos (\pi t) \mathbf{i}+\sin (\pi t) \mathbf{j}+3 t \mathbf{k}$ at $t=3$. Also, parametrize the tangent line and the normal line at the same indicated point. Lastly, find an equation of the osculating plane at the same point.
27. Find a point at which the following curves intersect. Also the find angle of intersection.

$$
\mathbf{r}_{1}(t)=t \mathbf{i}+t^{2} \mathbf{j}-t^{3} \mathbf{k}, \quad \mathbf{r}_{2}(u)=\sin 2 u \mathbf{i}+u \cos u \mathbf{j}+u \mathbf{k}
$$

28. Find the arc length of the curve $2 \mathbf{i}+t^{2} \mathbf{j}+(t-1)^{2} \mathbf{k}$. from $t=0$ to $t=1$.
29. Find the radius of curvature of the curve $2 y=x^{2}$.
30. Find the radius of curvature of the curve $\mathbf{r}(t)=2 t \mathbf{i}+t^{3} \mathbf{j}$ in terms of t.
