Exam I Review Problem Set
 Math 21-123

1. Find a formula for the general term of the following sequence:
(a) $\left\{\frac{1}{\sqrt{2}}, 0,-\frac{1}{\sqrt{2}},-1,-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 1, \frac{1}{\sqrt{2}}, 0,-\frac{1}{\sqrt{2}}, \ldots\right\}$
(b) $\{2,7,12,17, \ldots\}$
(c) $\{2,1,2,1, \ldots\}$
2. Determine whether the following sequences converges or diverges. If it converges, find the limit.
(a) $a_{n}=n \sin \frac{1}{n}$
(b) $a_{n}=\frac{n}{\sqrt{n^{3}+1}}$
(c) $a_{n}=(-1)^{n}\left(1+\frac{1}{n}\right)^{n}$
(d) $a_{n}=\frac{10^{n}}{n!}$
(e) $a_{n}=n^{2} e^{-n}$
3. Determine whether the following sequences are monotonic or not. Give proper reasoning for your assertion.
(i) $a_{n}=\ln \left(\frac{n}{n+1}\right)$
(ii) $a_{1}=1 / 4, a_{n}=\frac{n!}{2^{n}}, n \geq 2$
(iii) $a_{n}=\left(3^{n}+4^{n}\right)^{1 / n}$
(iv) $a_{n}=\left(1+\frac{1}{n}\right)^{n}$, (HINT: $(1-x)^{n} \geq 1-n x$ for all $\left.x \leq 1\right)$
4. Determine whether the following sequences are bounded or not. Give proper reasoning for your assertion.
(a) $a_{n}=\left(3^{n}+4^{n}\right)^{1 / n}$
(b) $a_{n}=\frac{n}{e^{n}}$
(c) $a_{n}=\frac{n!}{2^{n}}$
(d) $a_{n}=n^{1 / n}$
(e) $a_{1}=1, a_{n}=3-\frac{1}{a_{n-1}}, n \geq 2$
5. Find the limit of the sequence $\{\sqrt{3}, \sqrt{3 \sqrt{3}}, \sqrt{3 \sqrt{3 \sqrt{3}}}, \ldots\}$.
6. Show that the sequence $\left\{a_{n}\right\}$ defined by $a_{1}=1 / 2, a_{n+1}=\frac{1}{2-a_{n}}$ satisfies $0 \leq a_{n} \leq 1$ and is decreasing. Deduce that the sequence is convergent and find its limit.
7. Determine whether or not the following series converge?
(a) $\sum\left(\frac{1}{k}-\frac{1}{k!}\right)$
(b) $\sum \sin \left(\frac{\pi}{k^{2}}\right)$
(c) $\sum(-1)^{k}(\sqrt{k+1}-\sqrt{k})$
(d) $\sum(-1)^{k} \frac{(k!)^{2}}{(2 k)!}$
(e) $\sum \frac{\cos (\pi k / 4)}{k^{2}}$
8. If the sum of the first six terms of a geometric series is 5.25 and the common ratio is $-\frac{1}{2}$, then find the first term of the series.
9. If the fourth term in geometric series is $\frac{4}{3}$ and the seventh term is $\frac{32}{81}$, then find the value of the common ratio.
10. Then find the sum of the first nine terms of the geometric series that has that has $a_{4}=48$ and $a_{6}=192$, where a_{n} is then $n^{t h}$ term of the geometric series $\sum_{n=0}^{\infty} a r^{n}$.
11. In the first stage of a chain email, four people send a message to four of their friends. Then what are the number of stages(to the nearest whole number) required for one million people to have received the email?
12. Estimate the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{4}}$ with an error <0.005.
13. Ex 8.2 Problem 4
14. Ex 8.2 Problem 12
15. Ex 8.2 Problem 14
16. Ex 8.2 Problem 17
17. Ex 8.2 Problem 18
18. Ex 8.2 Problem 47(b)
19. Ex 8.2 Problem 50
20. Ex 8.3 Problem 23
21. Ex 8.3 Problem 24
22. Ex 8.3 Problem 25
23. Ex 8.3 Problem 27
24. Ex 8.4 Problem 8
25. Ex 8.4 Problem 24
26. Ex 8.4 Problem 27
27. Ex 8.4 Problem 42
28. Mark True or False.
(a) Every unbounded sequence is divergent.
(b) If $\lim _{n \rightarrow \infty} a_{n}=0$ then $\sum a_{n}$ converges.
(c) If a_{n} converges then $\lim _{n \rightarrow \infty} a_{n}=0$
(d) Every telescoping series converges.
(e) Every alternating series converges.
(f) Every absolutely convergent series is convergent.
(g) Every convergent series is absolutely convergent.
(h) If $\sum\left|a_{n}\right|$ is divergent then $\sum a_{n}$ is also divergent.
(i) If $\sum a_{n}{ }^{2}$ is convergent then $\sum a_{n}$ is absolutely convergent.
(j) If $\sum a_{n}{ }^{2}$ is convergent then $\sum a_{n}$ is convergent.
(k) If $\sum a_{n}$ is convergent then $\sum a_{n}{ }^{2}$ is convergent.
(l) If $0 \leq a_{n} \leq b_{n}$ for every n and $\sum b_{n}$ diverges then $\sum a_{n}$ converges.
(m) The ratio test can be used to determine whether $\sum \frac{1}{n^{2}}$.
(n) Let a_{n} be a given series. If the sequence of partial sum is bounded then the series $\sum a_{n}$ converges.
(o) Let a_{n} be a given series of positive terms. If the sequence of partial sum is bounded then the series $\sum a_{n}$ converges.
(p) If $\left\{a_{k}\right\}$ is a decreasing sequence of positive numbers that converge to 0 then the alternating series $\sum(-1)^{k} a_{k}$ necessarily converge.
