Exam II Review Problem Set
 Math 21-123

1. Find the radius of convergence and the interval of convergence for the following functions:
(a) $\sum(-1)^{k} \frac{x^{k}}{k}$
(b) $\sum \frac{k}{6^{k}} x^{k}$
(c) $\sum \frac{k^{k}}{\left(2^{k}\right)!} x^{2 k}$
(d) $\sum\left(1+\frac{1}{k}\right)^{k} x^{k}$
(e) $\sum \frac{2^{1 / k} \pi^{k}}{k(k+1)(k+2)}(x-2)^{k}$
(f) $\sum \frac{k^{2}}{2 \cdot 4 \cdot 6 \cdots(2 k)} x^{k}$
(g) $\frac{1}{16}(x+1)-\frac{2}{25}(x+1)^{2}+\frac{3}{36}(x+1)^{3}-\frac{4}{49}(x+1)^{4}+\cdots$
2. If the radius of convergence of $\sum a_{k} x^{k}$ is 8 then can we say anything about the radius of convergence of $\sum a_{k} x^{3 k}$? Why or why not?
3. Suppose that the power series $\sum a_{k} x^{k}$ converges at $x=3$ and diverges at $x=-3$. What can you say about the convergence or divergence of the following series?
(a) $\sum a_{n} 4^{n}$
(b) $\sum(-1)^{n} a_{n} 2^{n}$
4. Suppose that the power series $\sum a_{k}(x+2)^{k}$ converges at $x=4$. At what other values of x must $\sum a_{k}(x+2)^{k}$ converge? Does the power series converge at $x=-8$? Explain.
5. Find the least value of n for which the sequence of partial sums s_{n} approximates the sum of the series $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!}$ within the error less than 0.0005 .
6. Test the series for (a) absolute convergence (b) conditional convergence.
(a) $\sum(-1)^{k} k \sin \frac{1}{k}$
(b) $\sum\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)$
(c) $\sum \sin \left(\frac{k \pi}{4}\right)$
(d) $\sum(-1)^{k} k e^{-k}$
(e) $\sum(-1)^{k}\left(1-\frac{1}{k}\right)^{k}$
(f) $\sum(-1)^{k} k^{-(1+1 / k)}$
(g) $\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}-\frac{1}{7}+\cdots+\frac{1}{3 k+2}-\frac{1}{3 k+3}-\frac{1}{3 k+4}+\cdots$
7. Find a power series representation centered at 0 for the following functions. Also, find R.O.C and I.O.C for the obtained power series.
(a) $x^{2} \arctan x$
(b) $\frac{2 x}{\left(1-x^{2}\right)}$
(c) $\arctan x^{2}$
(d) $\frac{x^{2}+x}{x^{2}+x-2}$
(e) $\frac{x^{4}-1}{(x-2)^{2}}$
8. Find the Maclaurin series for the following functions.
(a) $\sin x$
(b) $\cos x$
(c) $\cos x^{2}$
(d) e^{x}
(e) $x^{2} e^{x}$
(f) $\frac{1}{(2+x)^{400}}$
(g) $\sqrt{1+2 x}$
9. Prove the following statements.
(a) $\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$ for all x.
(b) $\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$ for all x.
(c) $e^{-x}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n!}$ for all x.
(d) $\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}$ for all $-1<x<1$.
(e) $\arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$ for all $-1<x<1$.
10. Find the sum of the following series.
(a) $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$
(b) $\sum_{n=2}^{\infty} \frac{n^{2}-n}{2^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$
(d) $\sum_{k=1}^{\infty} \frac{1}{k!}$
(e) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}$
(f) $\sum_{n=0}^{\infty}(-1)^{n} \frac{\pi^{2 n+1}}{(2 n+1)!}$
(g) $\sum_{n=0}^{\infty}(-1)^{n} \frac{\pi^{2 n}}{2^{2 n}(2 n)!}$
(h) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n 2^{n}}$
(i) $\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}$
(j) $\sum_{n=1}^{\infty} \frac{3^{n}}{n!5^{n}}$
11. Find the Taylor series for $f(x)$ centered at the given value of c.
(a) $f(x)=e^{x}, \quad c=3$
(b) $f(x)=\ln x \quad c=1$
(c) $f(x)=\sin x \quad c=\frac{\pi}{2}$
(d) $f(x)=x^{-2} \quad c=1$
12. Use series to compute the following integral.
(a) $\int \frac{\sin x}{x} d x$
(b) $\int e^{-x^{2}} d x$
(c) $\int \frac{e^{x}-1}{x} d x$
(d) $\int \frac{1-\cos x}{x} d x$
13. Use series to approximate the value of the following definite integrals within the specified error.
(a) $\int_{0}^{1} e^{-x^{2}} d x$ within 0.0001 .
(b) $\int_{0}^{1} e^{x^{2}} d x$ within 0.0004 .
14. Use series to compute the following limits.
(a) $\lim _{x \rightarrow 0} \frac{x-\arctan x}{x^{3}}$
(b) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$
15. Use series to solve the following differential equations.
(a) $f^{\prime}(x)=f(x)$ and $f(0)=1$
(b) $f^{\prime \prime}(x)+f(x)=0, f^{\prime}(0)=0$, and $f(0)=1$
(c) $f^{\prime \prime}(x)+f(x)=0, f^{\prime}(0)=1$, and $f(0)=0$
16. Let $f(x)=\sqrt{x}$.
(a) Find the Taylor polynomial of degree 2 for f at $c=4$.
(b) How accurately does the Taylor polynomial obtained in (a) approximates the function f when $3 \leq x \leq 5$.
17. Let $f(x)=\frac{e^{x}-1}{x}$.
(a) Expand f as a power series.
(b) Differentiate the power series obtained in part (a) and show that $\sum_{1}^{\infty} \frac{n}{(n+1)!}=1$.
18. Let $f(x)=x e^{x}$.
(a) Expand f as a power series.
(b) Integrate the power series obtained in part (a) and show that $\sum_{1}^{\infty} \frac{n+1}{(n+2)!}=\frac{1}{2}$.
19. Assume that f is a function such that $\left|f^{(n)}(x)\right|<1$ for all n and x.
(a) Estimate the error if $T_{5}(1 / 2)$ is used to approximate $f(1 / 2)$.
(b) Find the least positive integer n for which $T_{n}(-4)$ approximates $f(-4)$ within 0.001.
(c) Find the values of x such that the error in the approximation of f by T_{2} is less than 0.001.
20. Let $f(x)=e^{x}$.
(a) Determine the maximum possible error we incur by using $T_{6}(x)$ to approximate $f(x)=e^{x}$ for x in $[0,1]$.
(b) Give an estimate $e^{0.2}$ correct to three decimal places, that is, remainder is less than 0.0005 .
21. Estimate $\sin 0.5$ within 0.0001 using
(a) Lagrange's Remainder
(b) Alternating Series Estimation theorem
22. Estimate $\ln (1.4)$ and \sqrt{e} to within 0.01 .
