1. Find the radius of convergence and the interval of convergence for the following functions:

(a) $\sum (-1)^k \frac{x^k}{k}$

(b) $\sum \frac{k}{6^k} x^k$

(c)
$$\sum \frac{k^k}{(2^k)!} x^{2k}$$

(d)
$$\sum (1+\frac{1}{k})^k x^k$$

(e)
$$\sum \frac{2^{1/k} \pi^k}{k(k+1)(k+2)} (x-2)^k$$

(f)
$$\sum \frac{k^2}{2 \cdot 4 \cdot 6 \cdots (2k)} x^k$$

(g)
$$\frac{1}{16}(x+1) - \frac{2}{25}(x+1)^2 + \frac{3}{36}(x+1)^3 - \frac{4}{49}(x+1)^4 + \cdots$$

2. If the radius of convergence of $\sum a_k x^k$ is 8 then can we say anything about the radius of convergence of $\sum a_k x^{3k}$? Why or why not?

- 3. Suppose that the power series $\sum a_k x^k$ converges at x = 3 and diverges at x = -3. What can you say about the convergence or divergence of the following series?
 - (a) $\sum a_n 4^n$

(b) $\sum (-1)^n a_n 2^n$

4. Suppose that the power series $\sum a_k(x+2)^k$ converges at x = 4. At what other values of x must $\sum a_k(x+2)^k$ converge? Does the power series converge at x = -8? Explain.

5. Find the least value of n for which the sequence of partial sums s_n approximates the sum of the series $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!}$ within the error less than 0.0005.

6. Test the series for (a) absolute convergence (b) conditional convergence.

(a)
$$\sum (-1)^k k \sin \frac{1}{k}$$

(b)
$$\sum (\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}})$$

(c)
$$\sum \sin(\frac{k\pi}{4})$$

(d)
$$\sum (-1)^k k e^{-k}$$

(e)
$$\sum (-1)^k (1 - \frac{1}{k})^k$$

(f)
$$\sum (-1)^k k^{-(1+1/k)}$$

(g) $\frac{1}{2} - \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \frac{1}{7} + \dots + \frac{1}{3k+2} - \frac{1}{3k+3} - \frac{1}{3k+4} + \dots$

7. Find a power series representation centered at 0 for the following functions. Also, find R.O.C and I.O.C for the obtained power series.

(a) $x^2 \arctan x$

(b)
$$\frac{2x}{(1-x^2)}$$

(c) $\arctan x^2$

(d)
$$\frac{x^2 + x}{x^2 + x - 2}$$

(e)
$$\frac{x^4-1}{(x-2)^2}$$

8. Find the Maclaurin series for the following functions.

(a) $\sin x$

(b) $\cos x$

(c) $\cos x^2$

(d) e^x

(e) $x^2 e^x$

(f) $\frac{1}{(2+x)^{400}}$

(g) $\sqrt{1+2x}$

9. Prove the following statements.

(a)
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$
 for all x .

(b)
$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
 for all x .

(c)
$$e^{-x} = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!}$$
 for all x.

(d)
$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$$
 for all $-1 < x < 1$.

(e)
$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$
 for all $-1 < x < 1$.

10. Find the sum of the following series.

(a) $\sum_{n=1}^{\infty} \frac{n}{2^n}$

(b)
$$\sum_{n=2}^{\infty} \frac{n^2 - n}{2^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

(d) $\sum_{k=1}^{\infty} \frac{1}{k!}$

(e)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}$$

(f)
$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{(2n+1)!}$$

(g)
$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n}}{2^{2n}(2n)!}$$

(h)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n2^n}$$

(i) $\sum_{n=1}^{\infty} \frac{1}{n2^n}$

(j) $\sum_{n=1}^{\infty} \frac{3^n}{n!5^n}$

11. Find the Taylor series for f(x) centered at the given value of c.

(a) $f(x) = e^x$, c = 3

(b) $f(x) = \ln x \ c = 1$

(c)
$$f(x) = \sin x \ c = \frac{\pi}{2}$$

(d)
$$f(x) = x^{-2}$$
 $c = 1$

12. Use series to compute the following integral.

(a)
$$\int \frac{\sin x}{x} dx$$

(b) $\int e^{-x^2} dx$

(c)
$$\int \frac{e^x - 1}{x} dx$$

(d)
$$\int \frac{1-\cos x}{x} dx$$

13. Use series to approximate the value of the following definite integrals within the specified error.

(a) $\int_0^1 e^{-x^2} dx$ within 0.0001.

(b) $\int_0^1 e^{x^2} dx$ within 0.0004.

14. Use series to compute the following limits.

(a) $\lim_{x\to 0} \frac{x - \arctan x}{x^3}$

(b) $\lim_{x\to 0} \frac{1-\cos x}{x}$

15. Use series to solve the following differential equations.

(a) f'(x) = f(x) and f(0) = 1

(b)
$$f''(x) + f(x) = 0$$
, $f'(0) = 0$, and $f(0) = 1$

(c)
$$f''(x) + f(x) = 0$$
, $f'(0) = 1$, and $f(0) = 0$

16. Let $f(x) = \sqrt{x}$.

(a) Find the Taylor polynomial of degree 2 for f at c = 4.

(b) How accurately does the Taylor polynomial obtained in (a) approximates the function f when $3 \le x \le 5$.

- 17. Let $f(x) = \frac{e^x 1}{x}$.
 - (a) Expand f as a power series.

(b) Differentiate the power series obtained in part (a) and show that $\sum_{1}^{\infty} \frac{n}{(n+1)!} = 1$.

- 18. Let $f(x) = xe^x$.
 - (a) Expand f as a power series.

(b) Integrate the power series obtained in part (a) and show that $\sum_{1}^{\infty} \frac{n+1}{(n+2)!} = \frac{1}{2}$.

- 19. Assume that f is a function such that $|f^{(n)}(x)| < 1$ for all n and x.
 - (a) Estimate the error if $T_5(1/2)$ is used to approximate f(1/2).

(b) Find the least positive integer n for which $T_n(-4)$ approximates f(-4) within 0.001.

(c) Find the values of x such that the error in the approximation of f by T_2 is less than 0.001.

20. Let $f(x) = e^x$.

(a) Determine the maximum possible error we incur by using $T_6(x)$ to approximate $f(x) = e^x$ for x in [0, 1].

(b) Give an estimate $e^{0.2}$ correct to three decimal places, that is, remainder is less than 0.0005.

- 21. Estimate $\sin 0.5$ within 0.0001 using
 - (a) Lagrange's Remainder

(b) Alternating Series Estimation theorem

22. Estimate $\ln(1.4)$ and \sqrt{e} to within 0.01.