Group Project Worksheet Math 21-123 Due on Jan 31 in class

Gro	ıp Members:										
1	Give an exconverges.	cample of two	divergent	sequences	such	that	both	their	sum	and	product
2	What do yo	ou mean by m	nathematic	al inductio	n?						

3. Use Mathematical induction to show that the sequence given by $a_1 = 1$, $a_{n+1} = 1 + \sqrt{a_n}$ is monotonically increasing and bounded above by 3. Note that by monotonic sequence theorem, the above sequence converges. Thus, find the limit.

4. Show that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. (Read Page 424 of the text)

5. Find the sum of the series $\sum_{k=1}^{\infty} \frac{1}{(k+1)(k+3)}$.