Summary of Chapter 12 Practice Problems

Chapter 12. Double and Triple Integrals

12.1 The Double Integral over a Rectangle

Let f = f(x, y) be continuous on the Rectangle R: $a \le x \le b$, $c \le y \le d$.

The *double integral* of *f* over $R = \lim_{\Delta A_i \to 0} \sum f(x_i^*, y_i^*) \Delta A_i$ where (x_i^*, y_i^*) is a sample point in R_{ij} .

Notation: *double integral* of *f* over $\mathbf{R} = I = \iint_{\Re} f(x, y) dx dy$

Note: Area element = dA = dx dy

Let Ω be an arbitrary closed bounded region in the plane. Then

$$\iint_{\Omega} f(x, y) dx dy = \iint_{\Re} F(x, y) dx dy$$

Where \mathcal{R} is a rectangle that contains Ω , and F(x, y) = f(x, y) on Ω and F(x, y) = 0 on $\mathcal{R} - \Omega$.

The double integral $\iint_{\Omega} f(x, y) dx dy = \iint_{\Re} F(x, y) dx dy$ gives the volume of the solid bounded below by Ω and above by z = f(x, y).

The physical meaning of the integral $\iint dxdy$ is the area of the region over which the integration is done.

Repeated/Iterated Integrals

Complexity of double integrals comes from two sources:

- **1. Function**
- 2. Region

Practice Examples

Example1. Find the area of the region enclosed by $y = x^2$ and $y = x^3$.

Example2. Evaluate the integral $\iint x^2 y$ over the region

 $\Omega = \{(x, y) : 0 \le x \le 4, 0 \le y \le 2\}.$

Example3. Evaluate the integral $\iint x^2 y$ over the region

 $\Omega = \{ (x, y) : 0 \le x \le 4, 0 \le y \le x \}.$

Example4. Evaluate the integral $\iint \cos(x + y)$ over the region

 $\Omega = \{(x, y): 0 \le x \le \pi/2, 1 \le y \le \pi/2\}.$

Example5. Evaluate the integral $\iint x + 3y^3 dx dy$ over the region

 $\Omega = \{(x, y) : 0 \le x^2 + y^2 \le 4\}.$

Example6. Find the volume under the paraboloid $z = x^2 + y^2$ within the cylinder $x^2 + y^2 \le 1, z \ge 0$.

Example7. Evaluate the integral $\iint 4 - y^2$) over the region which is bounded between $y^2 = 2x$ and $y^2 = 8 - 2x$.

Example8. Sketch the region Ω that gives rise to the repeated integral and change the order of integration.

$$\int_0^1 \int_0^{y^2} f(x,y)$$

Example9. Evaluate $\int_0^1 \int_y^1 \cos \frac{1}{2} \pi x^2 dx dy$ by changing the order of integration.

Example10. Calculate by double integration the area of the bounded region determined by the given pair of curves.

$$y = x^2$$
, $x = 4y - y^2$

Example11. Find the volume of the solid bounded by the coordinate planes and the plane $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$.

Example12. The given integral $\int_0^1 \int_{-y}^y f(x, y) dx dy$ is equal to

a.
$$2\int_{-1}^{0}\int_{-x}^{1}f(x,y)dydx$$

b.
$$2\int_{0}^{1}\int_{x}^{1}f(x,y)dydx$$

c.
$$\int_{-1}^{0}\int_{-x}^{1}f(x,y)dydx + \int_{0}^{1}\int_{x}^{1}f(x,y)dydx$$

d. All of the above
e. None of the above

Example13. The given integral $\int_0^1 \int_{-\gamma}^y \sin \pi xy \, dx \, dy$ is equal to

a.
$$2 \int_0^1 \int_x^1 \sin \pi xy \, dy dx$$

b. $\int_{-1}^0 \int_{-x}^1 \sin \pi xy \, dy dx + \int_0^1 \int_x^1 \sin \pi xy \, dy dx$
c. 0
d. All of the above
e. None of the above

12.3 Double integrals and Polar coordinates

How to find the area of the region Ω ?

Single Integral: $\int_{\alpha}^{\beta} \rho_2^2(\theta) d\theta - \int_{\alpha}^{\beta} \rho_1^2(\theta) d\theta$ Double Integral: $\int_{\alpha}^{\beta} \int_{\rho_1(\theta)}^{\rho_2(\theta)} r dr d\theta$ Area Element: $dA = rdr d\theta$

When to use polar coordinates for integration?

Watch out for Signal:

- Integrating over the unit disk or a part of the unit disk.
- Integrand involves $x^2 + y^2$

Practice Problems

Example1. Use Double integral to find the area of one leaf of the petal curve $r = 3sin3\theta$. (HINT: Sketch the curve in rectangular coordinates by plotting some angles. You will get a flower with three petals(leaves).)

Example2. Evaluate $\int_0^{\frac{\pi}{2}} \int_0^{3sin\theta} r^2 dr d\theta$

Example3. Calculate by changing to polar coordinates.

$$\int_{-1}^{1} \int_{0}^{\sqrt{(1-y^2)}} \sqrt{(x^2+y^2)} dx dy$$

Example4. Use polar coordinates to evaluate the integral $\iint xy \, dx dy$ over unit disk.

Example5. Calculate by changing to polar coordinates.

$$\int_{\frac{1}{2}}^{1} \int_{0}^{\sqrt{(1-x^2)}} dy dx$$

Example6. Find the volume of the solid bounded below by the paraboloid $z = x^2 + y^2$ and above by the paraboloid $z = 1 - (x^2 + y^2)$.

12.5 Triple Integrals

Take a function of three variables continuous on some portion T of three-space.

Integral over a box: Π : $a_1 \le x \le a_2$, $b_1 \le y \le b_2$, $c_1 \le z \le c_2$

Partition each edge of the box, B:

The *triple integral* of *f* over $B = \lim_{\Delta V_i \to 0} \sum f(x_i^*, y_i^*, z_i^*) \Delta V_i$ where (x_i^*, y_i^*, z_i^*) is a sample point in B_{ij} .

Notation: *Triple integral* of *f* over $B = \iiint_B^{\cdot} f(x, y, z) dV$ **Note:** Volume element = dV = dx dy dz

Triple integral over a more general solid

$$\iiint_{\Pi} f(x, y, z) dx dy dz = \iiint_{B} F(x, y, z) dx dy dz$$

Where F(x, y, z) = f(x, y, z) for points on the domain Π and F(x, y, z) = 0 on the points inside the box B but outside the domain Π .

Remember:

- Positivity: When $f(x, y, z) \ge 0$ then $\iiint_{T}^{\cdot} f(x, y, z) \ge 0$
- Physical Meaning: $\iiint_T dx dy dz =$ Volume of T
- Order: If $f(x, y) \ge g(x, y)$ then $\iiint_T^{\cdot} f(x, y, z) dx dy dz \text{ is greater than}$ $\iiint_T^{\cdot} g(x, y, z) dx dy dz.$
- Linearity: $\iint_{\Pi} [af(x, y, z) + bg(x, y, z)] dxdydz$ $= a \iiint_{T} f(x, y, z) dxdydz + b \iiint_{T} g(x, y, z) dxdydz$

Repeated Triple Integrals

Reduction to a repeated integral

1. Type I: $a \le x \le b \quad \phi_1(x) \le y \le \phi_2(x) \quad \psi_1(x, y) \le z \le \psi_2(x, y)$ 2. Type II: $c \le y \le d \quad \phi_1(y) \le x \le \phi_2(y) \quad \psi_1(x, y) \le z \le \psi_2(x, y)$ 3. Type III: 4. 5. 6.

There are six possible types!

Practice Problems

Example1. Compare $\iiint_T^{\cdot} dx dy dz$ to $\iint_{\Omega}^{\cdot} f(x, y) dx dy$ where $T = \{(x, y, z): (x, y) \in \Omega, 0 \le z \le f(x, y)\}.$

Example2. Evaluate $\int_0^1 \int_{1-x}^{1+x} \int_0^{xy} 4z dx dy dz$.

Example3. Find the volume of the box where $2 \le x \le 4, 1 \le y \le 6, 0 \le z \le 2$ using triple integrals.

Example4. Calculate the triple integral $\iint_T z dx dy dz$ where T is the tetrahedron in the first octant bounded by the coordinate planes and the plane x + y + z = 1.

Example5. Find the volume of the solid bounded above by the cylindrical surface $x^2 + z = 4$, below by the plane x + z = 2, and on the sides by the planes y = 0 and y = 3. **Example6**. Find the volume of the solid bounded above by the plane

y + z = 2, below by the x, y-plane, and on the sides by x = 6 and $y = \sqrt{x}$.

Example7. Integrate f(x, y, z) = 2z over the solid S in the first octant bounded above by the paraboloid $z = 9 - x^2 - y^2$, below by the xy-plane, and on the sides by the planes $x = \sqrt{3} y$ and $y = \sqrt{3}x$.

Example8. Find the volume of the solid bounded above by the hemisphere $z = \sqrt{4 - x^2 - y^2}$ and below by the cone $z = \sqrt{3(x^2 + y^2)}$.

Example9. Find the volume of the solid bounded above by the plane y + z = 2, below by the xy-plane, and on the sides by x = 6 and $y = \sqrt{x}$.

16. 8 Cylindrical coordinates

This coordinate system is used for a point P(x, y, z) in a space where polar is used for x, y coordinates and z is kept as it is.

 $(x, y, z) \rightarrow (r, \theta, z)$ where $x = r \cos \theta \quad r^2 = x^2 + y^2$ $y = r \sin \theta \quad \tan \theta = \frac{y}{x}$ $z = z \qquad z = z$

$$\iiint_{\Omega} f(x, y, z) dx dy dz = \iiint_{\Gamma} F(r, \theta, z) r dr d\theta dz$$

where
$$F(r, \theta, z) = f(r \cos \theta, r \sin \theta, z)$$

Volume Element: $dV = rdr d\theta dz$

Watch out for same signals as for polar coordinates!

1. Given: $\int_0^{\pi} \int_0^2 \int_0^{4-r^2} r \, dz \, dr \, d\theta$.

(a) Sketch the solid determined by the limits.

b) Evaluate the Integral:

c) Interpret the Result:

2. Convert $\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}} \, dz \, dx \, dy$

into a triple integral in cylindrical coordinates. Sketch the solid determined by the limits. **3.** The cylinder $x^2 + y^2 = 4$, $z \ge 0$ is sliced by the plane z = 4 + y. Determine the volume of the "sliced" cylinder.

4. Draw the solid that is bounded above by a portion of the hemisphere $z = \sqrt{1 - x^2 - y^2}$ and below by the cone $z = \sqrt{3x^2 + 3y^2}$.

Set up a triple integral that gives the volume of the solid and then find its volume.

Example5. Integrate f(x, y, z) = 2z over the solid S bounded above by the paraboloid $z = 9 - x^2 - y^2$, below by the xy-plane, and on the sides by the planes $x = \sqrt{3} y$ and $y = \sqrt{3}x$. (in the first octant.)

Spherical Coordinates

This is another coordinate representation of a point P(x, y, z) in space.

$(x, y, z) \rightarrow (\rho, \theta, \phi)$	where
$x = \rho \sin \phi \cos \theta$	$\rho^2=x^2+y^2+z^2$
$y = \rho \sin \phi \sin \theta$	$\tan\theta = \frac{y}{x}$
$z=\rho\cos\phi$	$\cos\phi = \frac{z}{\rho}$

Triple integral:

$$\iiint_{T} f(x, y, z) \ dx dy dz =$$
$$\iiint_{S} f(\rho \sin \phi \cos \theta, \ \rho \sin \phi \sin \theta, \ \rho \cos \phi) \ \rho^{2} \sin \phi \ d\rho d\theta d\phi$$

What are they useful for? When are they useful?

Volume Element: $dV = \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$

1. Find the spherical coordinates of the points with rectangular coordinates $(2\sqrt{2}, -2\sqrt{2}, -4\sqrt{3})$.

2. Find the rectangular coordinates of the point with spherical coordinates $(\frac{1}{\sqrt{2}}, \frac{\pi}{4}, \frac{1}{\sqrt{2}})$.

3. Interpret $\rho = cos\phi$ geometrically.

1. Given

$$\int \int \int_{\Omega} \rho^3 \sin \phi \, d\rho \, d\phi \, d\theta =$$
$$\int_0^{2\pi} \int_0^{\pi/2} \int_0^2 \rho^3 \sin \phi \, d\rho \, d\phi \, d\theta$$

- (a) what is the integrand?
- (b) What is Ω?
- (c) Evaluate the integral.

2. Give the value of $\int_0^{\pi} \int_0^{\pi/2} \int_0^3 \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$ without calculating the integral.

Evaluate

$$\int_{-3}^{3} \int_{0}^{\sqrt{9-y^2}} \int_{0}^{\sqrt{9-x^2-y^2}} z\sqrt{x^2+y^2+z^2} \, dz \, dx \, dy$$

4. Evaluate $\int_{-1/2}^{1/2} \int_{-\sqrt{\frac{1}{4}-x^2}}^{\sqrt{\frac{1}{4}-x^2}} \int_{\sqrt{3x^2+3y^2}}^{\sqrt{1-x^2-y^2}} 1 \, dz \, dy \, dx$ by changing to spherical coordinates.

5. The volume of a solid T is given by an integral in spherical coordinates. Sketch T and evaluate the integral.

$$\int_0^{\pi/4} \int_0^{2\pi} \int_0^{\sec\phi} \rho^2 \sin\phi \, d\rho d\theta d\phi$$