## Summary of Chapter 12

Practice Problems

## Chapter 12. Double and Triple Integrals

### 12.1 The Double Integral over a Rectangle

Let $f=f(x, y)$ be continuous on the Rectangle R: $a \leq x \leq b, c \leq y \leq d$.


The double integral of $f$ over $\mathrm{R}=\lim _{\Delta A_{i} \rightarrow 0} \sum f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta A_{i}$ where ( $x_{i}^{*}, y_{i}^{*}$ ) is a sample point in $R_{i j}$.

Notation: double integral of $f$ over $\mathrm{R}=I=\iint_{\Re} f(x, y) d x d y$
Note: Area element $=\mathrm{dA}=\mathrm{dx}$ dy

Let $\Omega$ be an arbitrary closed bounded region in the plane. Then

$$
\iint_{\Omega} f(x, y) d x d y=\iint_{\Re} F(x, y) d x d y
$$

Where $\mathcal{R}$ is a rectangle that contains $\Omega$, and $F(x, y)=f(x, y)$ on $\Omega$ and $F(x, y)=0$ on $\boldsymbol{\mathcal { R }}-\Omega$.



The double integral $\iint_{\Omega} f(x, y) d x d y=\iint_{\Omega} F(x, y) d x d y$ gives the volume of the solid bounded below by $\Omega$ and above by $z=f(x, y)$.

The physical meaning of the integral $\iint d x d y$ is the area of the region over which the integration is done.

## Repeated/Iterated Integrals

## Complexity of double integrals comes from two sources:

## 1. Function

2. Region

Type I


Type II


## Practice Examples

Example1. Find the area of the region enclosed by $y=x^{2}$ and $y=x^{3}$.

Example2. Evaluate the integral $\iint x^{2} y$ over the region

$$
\Omega=\{(x, y): 0 \leq x \leq 4,0 \leq y \leq 2\} .
$$

Example3. Evaluate the integral $\iint x^{2} y$ over the region

$$
\Omega=\{(x, y): 0 \leq x \leq 4,0 \leq y \leq x\} .
$$

Example4. Evaluate the integral $\iint \cos (x+y)$ over the region

$$
\Omega=\{(x, y): 0 \leq x \leq \pi / 2,1 \leq y \leq \pi / 2\} .
$$

Example5. Evaluate the integral $\iint x+3 y^{3} d x d y$ over the region $\Omega=\left\{(x, y): 0 \leq x^{2}+y^{2} \leq 4\right\}$.
Example6. Find the volume under the paraboloid $z=x^{2}+y^{2}$ within the cylinder $x^{2}+y^{2} \leq 1, z \geq 0$.

Example7. Evaluate the integral $\iint 4-y^{2}$ ) over the region which is bounded between $y^{2}=2 x$ and $y^{2}=8-2 x$.

Example8. Sketch the region $\Omega$ that gives rise to the repeated integral and change the order of integration.

$$
\int_{0}^{1} \int_{0}^{y^{2}} f(x, y)
$$

Example9. Evaluate $\int_{0}^{1} \int_{y}^{1} \cos \frac{1}{2} \pi x^{2} d x d y$ by changing the order of integration.

Example10. Calculate by double integration the area of the bounded region determined by the given pair of curves.

$$
y=x^{2}, x=4 y-y^{2}
$$

Example11. Find the volume of the solid bounded by the coordinate planes and the plane $\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$.

Example12. The given integral $\int_{0}^{1} \int_{-y}^{y} f(x, y) d x d y$ is equal to
a. $2 \int_{-1}^{0} \int_{-x}^{1} f(x, y) d y d x$
b. $2 \int_{0}^{1} \int_{x}^{1} f(x, y) d y d x$
c. $\int_{-1}^{0} \int_{-x}^{1} f(x, y) d y d x+\int_{0}^{1} \int_{x}^{1} f(x, y) d y d x$
d. All of the above
e. None of the above

Example13. The given integral $\int_{0}^{1} \int_{-y}^{y} \sin \pi x y d x d y$ is equal to
a. $2 \int_{0}^{1} \int_{x}^{1} \sin \pi x y d y d x$
b. $\int_{-1}^{0} \int_{-x}^{1} \sin \pi x y d y d x+\int_{0}^{1} \int_{x}^{1} \sin \pi x y d y d x$
c. 0
d. All of the above
e. None of the above

### 12.3 Double integrals and Polar coordinates



How to find the area of the region $\Omega$ ?
Single Integral: $\int_{\alpha}^{\beta} \rho_{2}^{2}(\theta) d \theta-\int_{\alpha}^{\beta} \rho_{1}^{2}(\theta) d \theta$
Double Integral: $\int_{\alpha}^{\beta} \int_{\rho_{1}(\theta)}^{\rho_{2}(\theta)} r d r d \theta$
Area Element: $\quad d A=r d r d \theta$
When to use polar coordinates for integration?
Watch out for Signal:

- Integrating over the unit disk or a part of the unit disk.
- Integrand involves $x^{2}+y^{2}$


## Practice Problems

Example1. Use Double integral to find the area of one leaf of the petal curve $r=3 \sin 3 \theta$. (HINT: Sketch the curve in rectangular coordinates by plotting some angles. You will get a flower with three petals(leaves).)

Example2. Evaluate $\int_{0}^{\frac{\pi}{2}} \int_{0}^{3 \sin \theta} r^{2} d r d \theta$
Example3. Calculate by changing to polar coordinates.

$$
\left.\int_{-1}^{1} \int_{0}^{\sqrt{\left(1-y^{2}\right)}} \sqrt{( } x^{2}+y^{2}\right) d x d y
$$

Example4. Use polar coordinates to evaluate the integral $\iint x y d x d y$ over unit disk.

Example5. Calculate by changing to polar coordinates.

$$
\int_{\frac{1}{2}}^{1} \int_{0}^{\sqrt{\left(1-x^{2}\right)}} d y d x
$$

Example6. Find the volume of the solid bounded below by the paraboloid $z=x^{2}+y^{2}$ and above by the paraboloid $z=1-\left(x^{2}+y^{2}\right)$.

### 12.5 Triple Integrals

Take a function of three variables continuous on some portion T of three-space.

Integral over a box: $\Pi$ : $a_{1} \leq x \leq a_{2}, b_{1} \leq y \leq b_{2}, c_{1} \leq z \leq c_{2}$


Partition each edge of the box, B:


The triple integral of $f$ over $\mathrm{B}=\lim _{\Delta V_{i} \rightarrow 0} \sum f\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \Delta V_{i}$ where $\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right)$ is a sample point in $B_{i j}$.

Notation: Triple integral of $f$ over $\mathrm{B}=\iiint_{B} f(x, y, z) d V$
Note: Volume element $=\mathrm{dV}=\mathrm{dx}$ dy dz

## Triple integral over a more general solid



$$
\iiint_{\Pi} f(x, y, z) d x d y d z=\iiint_{B} F(x, y, z) d x d y d z
$$

Where $F(x, y, z)=f(x, y, z)$ for points on the domain $\Pi$ and $F(x, y, z)=0$ on the points inside the box $B$ but outside the domain $\Pi$.

- Positivity: When $f(x, y, z) \geq 0$ then $\iiint_{\mathrm{T}} f(x, y, z) \geq 0$
- Physical Meaning: $\iiint_{\mathrm{T}} d x d y d z=$ Volume of $T$
- Order: If $f(x, y) \geq g(x, y)$ then
$\iiint_{T} f(x, y, z) d x d y d z$ is greater than $\iiint_{\mathrm{T}} g(x, y, z) d x d y d z$.
- Linearity: $\iiint_{\Pi}[a f(x, y, z)+b g(x, y, z)] d x d y d z$
$=a \iiint_{T} f(x, y, z) d x d y d z+$
$b \iiint_{\mathrm{T}} g(x, y, z) d x d y d z$


## Repeated Triple Integrals

## Reduction to a repeated integral

1. Type I: $a \leq x \leq b \quad \phi_{1}(x) \leq y \leq \phi_{2}(x) \quad \psi_{1}(x, y) \leq z \leq \psi_{2}(x, y)$
2. Type II: $c \leq y \leq d \quad \phi_{1}(y) \leq x \leq \phi_{2}(y) \quad \psi_{1}(x, y) \leq z \leq \psi_{2}(x, y)$
3. Type III:
4. ......
5. ......
6. ......

There are six possible types!

## Practice Problems

Example1. Compare $\iiint_{T} d x d y d z$ to $\iint_{\Omega} f(x, y) d x d y$ where $T=$ $\{(x, y, z):(x, y) \in \Omega, 0 \leq z \leq f(x, y)\}$.

Example2. Evaluate $\int_{0}^{1} \int_{1-x}^{1+x} \int_{0}^{x y} 4 z d x d y d z$.
Example3. Find the volume of the box where $2 \leq x \leq 4,1 \leq y \leq 6,0 \leq z$ $\leq 2$ using triple integrals.

Example4. Calculate the triple integral $\iiint_{T} z d x d y d z$ where $T$ is the tetrahedron in the first octant bounded by the coordinate planes and the plane $x+y+z=1$.

Example5. Find the volume of the solid bounded above by the cylindrical surface $x^{2}+z=4$, below by the plane $x+z=2$, and on the sides by the planes $y=0$ and $y=3$.
Example6. Find the volume of the solid bounded above by the plane $y+z=2$, below by the $\mathrm{x}, \mathrm{y}$-plane, and on the sides by $x=6$ and $y=\sqrt{ } x$.

Example7. Integrate $f(x, y, z)=2 z$ over the solid $S$ in the first octant bounded above by the paraboloid $z=9-x^{2}-y^{2}$, below by the $x y$-plane, and on the sides by the planes $x=\sqrt{3} y$ and $y=\sqrt{3} x$.

Example8. Find the volume of the solid bounded above by the hemisphere $z=\sqrt{4-x^{2}-y^{2}}$ and below by the cone $z=\sqrt{3\left(x^{2}+y^{2}\right)}$.

Example9. Find the volume of the solid bounded above by the plane $y+z=2$, below by the xy-plane, and on the sides by $x=6$ and $y=\sqrt{ } x$.

## 16. 8 Cylindrical coordinates

This coordinate system is used for a point $P(x, y, z)$ in a space where polar is used for $\mathrm{x}, \mathrm{y}$ coordinates and z is kept as it is.
$(x, y, z) \rightarrow(r, \theta, z)$
where
$x=r \cos \theta \quad r^{2}=x^{2}+y^{2}$
$y=r \sin \theta \quad \tan \theta=\frac{y}{x}$
$z=z$
$z=z$
$\iiint_{\Omega} f(x, y, z) d x d y d z=\iiint_{\Gamma} F(r, \theta, z) r d r d \theta d z$ where
$F(r, \theta, z)=f(r \cos \theta, r \sin \theta, z)$
Volume Element: $d V=r d r d \theta d z$

Watch out for same signals as for polar coordinates!

$$
\begin{aligned}
& \text { 1. Given: } h_{0}^{\pi} /_{0}^{2} \int^{4-r^{2}} r d z d r d o \text {. } \\
& \text { Ca> Sketch the solid determined by the lim- } \\
& \text { its. }
\end{aligned}
$$

b) Evaluate the Integral:


## c) Interpret the Result:

$$
\begin{aligned}
& \text { 2. Convert } \\
& \int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{9-x^{2}-x^{2}} \sqrt{x^{2}+x^{2}} d x d x d y \\
& \text { into a triple intedral in cylindrical coordi- } \\
& \text { mates. Sketch the solid determined by the } \\
& \text { limits. }
\end{aligned}
$$

3. The cylinder $x^{2}+x^{2}=4, x^{2}$ is sliced by the plane $z=4+3$. Determine the volume of the "sliced" cylinder.
4. Draw the solid that is bounded above by a portion ofthe hemisphere $z=\sqrt{1-x^{2}-y^{2}}$ and below by the cone $z=\sqrt{3 x^{2}+3 y^{2}}$.

Set up a triple integral that gives the volune of the solid and then find its volume.

Example5. Integrate $f(x, y, z)=2 z$ over the solid $S$ bounded above by the paraboloid $z=9-x^{2}-y^{2}$, below by the xy -plane, and on the sides by the planes $x=\sqrt{3} y$ and $y=\sqrt{3} x$. (in the first octant.)

## Spherical Coordinates

This is another coordinate representation of a point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ in space.

$$
\begin{array}{ll}
(x, y, z) \rightarrow(\rho, \theta, \phi) & \text { where } \\
& \\
x=\rho \sin \phi \cos \theta & \rho^{2}=x^{2}+y^{2}+z^{2} \\
y=\rho \sin \phi \sin \theta & \tan \theta=\frac{y}{x} \\
z=\rho \cos \phi & \cos \phi=\frac{z}{\rho}
\end{array}
$$

Triple integral:

$$
\begin{gathered}
\iiint_{T} f(x, y, z) d x d y d z= \\
\iiint_{S} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi
\end{gathered}
$$

What are they useful for? When are they useful?


Volume Element: $d V=\rho^{2} \sin \phi d \rho d \theta d \phi$
$v$

1. Find the spherical coordinates of the points with rectangular coordinates $(2 \sqrt{2},-2 \sqrt{2},-4 \sqrt{3})$.
2. Find the rectangular coordinates of the point with spherical coordinates $\left(\frac{1}{\sqrt{2}}, \frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$.
3. Interpret $\rho=\cos \phi$ geometrically.
4. Given

$$
\begin{gathered}
\iiint_{\Omega} \rho^{3} \sin \phi d \rho d \phi d \theta= \\
\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{2} \rho^{3} \sin \phi d \rho d \phi d \theta
\end{gathered}
$$

(a) what is the integrand?
(b) What is $\Omega$ ?
(c) Evaluate the integral.
2. Give the value of

$$
\int_{0}^{\pi} \int_{0}^{\pi / 2} \int_{0}^{3} p^{2} \sin \phi d \rho d \phi d O
$$

without calculating the integral.
3. Evaluate
$\int_{-3}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} z \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y$
4. Evaluate

$$
\int_{-1 / 2}^{1 / 2} \int \sqrt{\frac{1}{4}-x^{2}} \sqrt{\frac{1}{4}-x^{2}} \sqrt{3 x^{2}+3 x^{2}-x^{2}} \text { } 1 d x d y d x
$$

by changind to spherical coordinates.
5. The volume of a solid $T$ is given by an integral in spherical coordinates. Sketch $T$ and evaluate the integral.

$$
\int_{0}^{\pi / 4} \int_{0}^{2 \pi} \int_{0}^{\sec \phi} \rho^{2} \sin \phi d \rho d \theta d \phi
$$

