
MATH 21-123

List of Important Ideas and Definition from Section 8.4-8.8

1. Alternating Series Estimation Theorem: If s =
∑

(−1)n−1bn is the sum of an
alternating series that satisfies

(i) 0 ≤ bn+1 ≤ bn and

(ii) limn→∞ bn = 0

then
|Rn| ≤ bn+1

The above theorem is useful is estimating the sum of an alternating series. For instance,
we can say that the sum of the series

∑ (−1)n
n!

is equal to 3.68 to within the error less
than 0.0002 (See Example 4 on pg 440).

2. Absolutely convergent Series: A series
∑

an is called absolutely convergent if the
series

∑
|an| is convergent. An important fact about absolutely convergent series is

that they are always convergent, that is,
∑
|an| converges ⇒

∑
an converges.

3. Conditionally convergent Series: A series
∑

an is called conditionally convergent
if it is convergent but not absolutely convergent.

4. Power Series: A general form of a power series centered at c is given by
∑

an(x−c)n.

5. Power Series Theorem: There are only three possibilities for any power series∑
an(x− c)n:

(a) It converges only at at the center c

(b) It converges for all x

(c) There is a positive number R such that the power series converges if |x− c| < R
and diverges if |x− c| > R.

6. Consequences of Power Series Theorem

(a) Radius of Convergence: The number R in the Power series theorem is called the
radius of convergence. To find R, we use either the Ratio test or the Root test.

(b) Interval of Convergence: The maximal interval on which a power series converges.
It could be anything out of four choices:

(c−R, c + R), [c−R, c + R), (c−R, c + R], [c−R, c + R]

In general, behavior at c - R and c + R is not predictable. Thus, checking at end
points is important.
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(c) If
∑

akx
k converges at c 6= 0 then it converges for all |x| < |c| and if

∑
akx

k

diverges at d then it diverges for all x such that |x| > |d|.

7. Differentiation of Power Series: This is also called term by term-by-term differen-
tiation.

(
∞∑
n=0

an(x− c)n)′ =
∞∑
n=1

nan(x− c)n−1 =
∞∑
n=0

(n + 1)an+1(x− c)n

Note that R.O.C of
∑∞

n=0 an(x − c)n = R.O.C of
∑∞

n=1 nan(x − c)n−1, that is, f and
f ′ have the same radius of convergence given that f represents a power series.

8. Integration of Power Series: This is also called term by term-by-term integration.∫ ∞∑
n=0

an(x− c)n dx =
∞∑
n=0

an
(x− c)n+1

n + 1
+ C =

∞∑
n=1

an−1
(x− c)n

n
+ C

where C is the constant of integration. Note that R.O.C of
∑∞

n=0 an(x− c)n = R.O.C

of
∑∞

n=0 an
(x−c)n+1

n+1
+ C, that is, f and

∫
f(x) dx have the same radius of convergence

given that f represents a power series.

9. Representing Function as a Power Series: To represent a function as a power
series, we need the following tools:

(a) Geometric series:
∑∞

n=0 ar
n = a

1−r whenever |x| < 1.

(b) Differentiation of Power Series

(c) Integration of Power Series

10. Taylor Series of f at c:
∑∞

n=0
f (n)(c)

n!
(x− c)n.

11. Maclaurin Series of f : This is a special name given to the Taylor series of f centered

at zero. It is given by
∑∞

n=0
f (n)(0)

n!
xn.

12. Lagrange’s form of Remainder: For a given function f, the Lagrange’s form of
remainder is given by

Rn(x) =
f (n+1)(z)

(n + 1)!
(x− c)n+1

where z is a number between c and x. Also, note that z depends on n. Sometimes, it
is useful to deal with the remainder formula as follows:

|Rn(x)| ≤ max
z
|f (n+1)(z)| |x− c|n+1

(n + 1)!
.

For instance, when we know that |f (n)(x)| < K for all x and n then the above form
saves us from the trouble of worrying about z. For example, we can do this for cosx
and sinx.
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13. Taylor’s Polynomial: The nth degree Taylor polynomial for a function f centered at
c is given

Tn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n =

n∑
k=0

f (k)(c)

k!
(x− c)k

14. Representing Function as a Taylor Series: There are two ways we represent a
function f as Taylor Series.

(a) If we know beforehand that f has a power series representation, that is, f = power
series centered at c for all x with |x − c| < R then f = sum of its Taylor Series
centered at c for all x with |x− c| < R.

(b) If we do not know that f has a power series representation then this method turns
out to be quite effective. According to this method, if limn→∞Rn(x) = 0 for all
x with |x− c| < R then f = sum of its Taylor Series centered at c for all x with
|x− c| < R.

This method works in all situations but we prefer the power series expansion
whenever possible as the power series expansion method is usually much faster
and easier to apply.

Remember that limn→∞
xn

n!
= 0. This turns to be the key result in showing that

limn→∞Rn(x) = 0.

15. Application of Series: There are many applications of the Taylor series expansion.

(a) To find the integral of a function with complicated antiderivative.

(b) To find an approximation of a definite integral

(c) To find the limit of certain function

(d) To find a polynomial approximation of a function: In particular, there are two
ways of finding an approximation for functions with alternating Taylor series —
one uses alternating series estimation theorem and the other using the remainder
form.

(e) To solve differential equations

16. Following are the power series representation of some of the important function.

1. cosx =
∑∞

n=0(−1)n x2n+1

(2n+1)!
for all x.

2. sinx =
∑∞

n=0(−1)n x2n

(2n)!
for all x.

3. ex =
∑∞

n=0(−1)n xn

n!
for all x.

4. ln(1 + x) =
∑∞

n=1(−1)n+1 xn

n
for all −1 < x < 1.

5. tan−1x =
∑∞

n=0(−1)n x2n+1

2n+1
for all −1 < x < 1.

6. (1 + x)k = 1 + kx + k(k−1)
2!

x2 + k(k−1)(k−2)
3!

x3 + · · · for all −1 < x < 1.

7. 1
1−x =

∑∞
n=0 x

n for all −1 < x < 1.
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