
MATH 21-123

Tips on Using Tests of Convergence

1. Geometric Series Test (GST): The use of this test is straightforward. You only
use this when the series is in the form

∑∞
n=0 ar

n. We say that the series converges if
and only if |r| < 1 and the sum is given by,

∑∞
n=0 ar

n = a
1−r , where a is the first term

and r is the common ratio. Also note that
∑k

n=0 ar
n = a(1−rk+1)

1−r . To understand this
formula, look for its proof into your notes. Note that terms of the series could even be
negative.

2. p-Series Test: The series
∑∞

n=1
1
np converges if and only if p > 1. This test can be

proved using integral test(which is described next). You will probably never get to
use this test individually in a problem but nevertheless this test has important role to
play as it supports the working of other tests. We generally use this test along with
comparison and limit comparison test.

3. Integral Test: This test states that if an = f(n) for some function that is nonnegative
and a continuous decreasing (eventually decreasing) function on [1,∞] then

∑∞
n=1 an

converges if and only if
∫∞
1

f(x) dx converges. Make sure to check all the properties
before you apply this test. In general, you use this test when the terms have the
configuration of a derivative. For example:

∑
lnn
n
,
∑

1
nlnnp ,

∑
ne−n and etc. The

convergence or the divergence for some of the above mentioned examples may also be
shown using other tests, for instance, we could use comparison test for the first one,
Root test or the Ratio test for the third one.

4. Comparison Test (CT): First of all, note that this test is only valid for positive term
series (like the integral test). This test states that if

∑
an is a series with positive

terms and

* an ≤ bn such that
∑

bn converges then
∑

an also converges.

* an ≥ bn such that
∑

bn diverges then
∑

an also diverges.

Typically, you choose bn to be either the p-series or the geometric series(basically the
series about which you know quite a lot in terms of its convergence). Please be
warned about the right inequalities. It is easy to fall into the trap of justifying
the wrong inequality.

5. Limit Comparison Test (LCT): This test is also valid for positive term series
(
∑

an, an ≥ 0) only. Again you choose bn as in the case of the comparison test. The
only difference is(which makes this test easy to use) that instead of checking for in-
equalities, you look for the limit of an

bn
.

Formally speaking, this states that if
∑

an is a series with positive terms and you
choose

∑
bn such that limn→∞

an
bn

is non-zero and finite then
∑

an converges(diverges)
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if and only if
∑

bn converges(diverges).

Typically, you use this test when you are a given a series with nth term given by a
rational function in term of n. This by no means imply that you cannot use this
test for series other the ones that are given by rational functions, for example, this test
works best for

∑
sin π

n2 . Keep in mind that this test fails if the limit turns out to
be zero or infinity. In this case, you should look for other test. It is possible that
the same series might converge or diverge using some other test.

8. Divergence test (DT): This test states that if limn→∞ an either does not converge
to zero or does not exist then the series

∑
an must diverge. The converse of this is

not true. Other than checking the divergence of the series, this test also allows us find
the limit of sequences. If the series

∑
an converges then limn→∞ an = 0. This is quite

useful. For instance, if you recall we found limn→∞
n!
nn = 0 using squeeze theorem.

Another way to see this, show that the series
∑

n!
nn converges which can be done using

ratio test.

7. Alternating Series Test (AST): This test is used for checking the convergence of
an alternating series. As opposed to the divergence test, this test allows us to claim
the convergence of the series

∑
(−1)nan if in addition to lim an = 0 we have that all

the terms an are positive and decreasing.

Formally speaking, if
∑

(−1)nan is a series with an ≥ 0 for all n such that

* an is a decreasing sequence(eventually decreasing).

* limn→0 an = 0

then
∑

(−1)nan converges.

The converse of the above is not true. In other words, the above test is inconclusive
if an’s fail to decrease. Note that if lim an 6= 0 then lim(−1)nan does not exist which
implies that

∑
(−1)nan fail to diverge by divergence test.

7. Ratio Test: This test is very useful in checking for the absolute convergence of the
series. Keep in mind that the absolute convergence for positive term series is same as
convergence which means that this can be used for any kind of series.

This test states that given any series
∑

an.

– If limn→∞ |an+1

an
| < 1 then

∑
an converges absolutely.

– If limn→∞ |an+1

an
| > 1 then the given series

∑
an diverges.

– If limn→∞ |an+1

an
| = 1 then nothing can be said about the series. In other words,

we say that the ratio is inconclusive.
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NOTE: Always take the absolute value of the expression an+1

an
.

This test is particularly effective with factorials and with combination of powers
and factorials. If the terms are rational functions of n, the ratio test is inconclusive.
For example: we know that the series sum 1

n+1
diverges by LCT(say) but the ratio test

turns out to be inconclusive.

Indeed, if we take an = 1
n+1

then

lim
n→∞

|an+1

an
| = lim

n→∞

n + 1

n + 2
= 1

which implies that the ratio test is inconclusive.

8. Root Test: This test is very useful in checking for the absolute convergence of the
series just like the ratio test.

This test states that given any series
∑

an.

– If limn→∞ |an|1/n < 1 then
∑

an converges absolutely.

– If limn→∞ |an|1/n > 1 then the given series
∑

an diverges.

– If limn→∞ |an|1/n = 1 then nothing can be said about the series. In other words,
we say that the ratio is inconclusive.

NOTE: Remember to take the absolute value of the term an before taking its nth root.

In general, this test is used only if powers are involved. Though, it is not necessary
for you to use this test every time you see powers. For example, let us take a look at
the following contrasting examples.

(a) Determine whether the series
∑

n→∞(−1)n(
√
n + 1−

√
n)n converges or diverges.

Note that an = (−1)n(
√
n + 1−

√
n)n ≥ 0. Consider

lim
n→∞

|an|1/n = lim
n→∞

(
√
n + 1−

√
n)n

1/n

= lim
n→∞

(
√
n + 1−

√
n)

= lim
n→∞

(
√
n + 1−

√
n)

√
n + 1 +

√
n√

n + 1 +
√
n

rationalize

= lim
n→∞

1√
n + 1 +

√
n

= 0

Since limn→∞ |an|1/n = 0 < 1, the given series
∑

(
√
n + 1 −

√
n)n converges (in

fact absolutely) by Root test.
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(b) Determine whether the series
∑

n→∞(−1)n(
√
n + 1 +

√
n)n converges or diverges.

We do not NEED Root test for this one, though, we can use if we want. Note that
limn→∞(

√
n + 1+

√
n)n ==∞)∞ =∞. This implies that limn→∞(−1)n(

√
n + 1+√

n)n does not exist. Hence the given series
∑

n→∞(−1)n(
√
n + 1+

√
n)n diverges

by divergence test.

If the terms are rational functions of n then this test is very difficult to apply and also
fails almost every time. Even for simple example such as

∑
1
n

this test fails. Indeed if
an = 1

n
and we consider

lim
n→∞

|an|1/n = lim
n→∞

1

n

1/n

= lim
n→∞

1

n1/n
= 1

using the fact that limn→∞ n1/n = 1. This implies that the root test is inconclusive.

Summary of Some Important Tips

1. Rational terms are best handled with comparison or limit comparison test with
p-series test. NO Root or Ratio test for rational functions of n.

2. Powers of n — Root test.

3. Factorials and the combination of factorials and powers — Ratio test.

4. Divergence test is inconclusive if limn→∞ an = 0.

5. CT is inconclusive if (your series)≤ (divergent series) or (you series)≥ (convergent
series) or if any of the terms in either sequence are negative.

6. LCT is inconclusive if limn→∞
an
bn

= 0 or ∞, or if any of the terms in either
sequence are negative.

7. AST is inconclusive if an is not decreasing or positive.

8. The Ratio test if inconclusive if limn→∞ |an+1

an
| = 1.

9. The Ratio test if inconclusive if limn→∞ |an|1/n = 1.

10. The tests which are only valid for positive terms can be used for the series with
negative terms as well by taking the absolute value of the terms. This can help
us determining at least the absolute convergence of the series.

Last Remark: Absolute convergence means everything converges, that is,
∑
|an|

converges which further implies that
∑

an convergence. Thus it can thought of as
the “strong convergence”. On the other hand, conditional convergence means that the
series

∑
an converges BUT

∑
|an| diverges. Thus we can think of this convergence as

“ weak convergence” or “partial convergence”.
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