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Abstract

Expander graphs form a class of combinatorial objects that are used for many important constructions
that are of interest in the theory of computation; their widespread applications range from error-correcting
codes to pseudorandom number generators and switching networks. Yet until recently, constructions of
the expander graphs themselves were either highly nontrivial or entirely random and unstructured. In
their 2002 paper, Alon and Roichman proved that for every group G of order n, the Cayley graph with
respect to O(log n) random elements almost always produces an expander. This stochastic construction
provided a nice alternative to the previously known explicit, but sophisticated, constructions. It also
avoided inefficiencies due to local expansion deficiencies in the entirely randomized argument.

However, their proof was fairly complex and derived its bound indirectly, through the use of an
auxiliary inequality that related the second-largest (in absolute value) eigenvalue of the graph’s adjacency
matrix to the probability that a random walk on the graph is closed. In this paper, we present a direct
proof of the Abelian case of their result, using only elementary group representation theory (which,
incidentally, is equivalent to Fourier analysis in our Abelian case). Furthermore, our representation-
theoretic approach induces the stronger conjecture that only O(log R) generators are required, where R
is the number of irreducible representations of G. This would yield an asymptotic improvement because
there exist groups, such as the symmetric group, for which R is subpolynomial with respect to n.

1 Background

1.1 Definitions

Definition 1 Let Γ be an undirected graph with vertex set V and edge set E. We call Γ a c-expander if
for any subset S ⊆ V , we have |A(S)| > c|S|(1− |S|/|V |), where A(S) is the set of vertices in V \S that are
adjacent to vertices in S.

Definition 2 Let G be a group, and let S be a symmetric set of elements (i.e. s ∈ S ⇔ s−1 ∈ S). The
Cayley graph X(G, S) is defined to be the graph with vertex set G and edge set {(g, sg) : g ∈ G, s ∈ S}.

Definition 3 Let Γ be a d-regular graph. Then the normalized adjacency matrix of Γ is defined to be
(1/d)A, where A is the adjacency matrix of Γ.

1.2 Notation

• Let Γ be a graph on n vertices. Its normalized adjacency matrix must be real and symmetric, hence di-
agonalizable with real eigenvalues; let its eigenvalues counting multiplicity be (λ1, λ2, . . . , λn), arranged
in order of nonincreasing absolute value. Let µ(Γ) denote |λ2|.

• Let M be a square matrix; let λ(M) = max{|λ| : λ is an eigenvalue of M}.
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1.3 Previous work

Several constructions for expander graphs are known, and one important family of such constructions consists
of Cayley graphs that turn out to be expanders. These are convenient constructions because the resulting ex-
pander graphs inherit additional structure from their parent Cayley graphs. For many years, the only known
Cayley graph constructions (e.g. the LPS construction in [6]) explicitly specified groups and generators, but
they were very complex and required advanced mathematics.

Then in 2002, Alon and Roichman published (in [1]) a stochastic construction that was as simple as the
explicit constructions were intricate; they proved that for any 1 > c > 0, the Cayley graph of an arbitrary
group G with respect to O(log |G|) random generators was a c-expander, with probability tending to 1 as
|G| → ∞. This remarkable expansion result was derived from eigenvalue analysis of the corresponding
adjacency matrices, for which they only needed to prove this theorem:

Theorem 1 (Alon/Roichman, 2002) For every 1 > δ > 0, there exists a C(δ) > 0 such that the following
holds. Let G be a group, and let S be a set of C(δ) log |G| random elements of G. Then

E(µ(X(G, S))) < 1− δ,

where the expectation is taken with G fixed and S variable.

The first step of their proof was to use the following general matrix inequality to bound µ, which ignored
the fact that the matrices in question had special properties (they were adjacency matrices of Cayley graphs):

Fact 1 Let A be a real symmetric matrix, with eigenvalues |µ0| ≥ |µ1| ≥ · · · ≥ |µn−1|. Then for every
natural number m:

|µ1| ≤
(
Tr(A2m)− µ0

)1/2m

Our paper will study Theorem 1 through the lens of group representation theory, with the aim of reproving
and refining it. Since our approach will allow us to work with µ directly, it has the potential to recapture
information that may have been lost in the application of Fact 1.

2 Our result

2.1 The main theorem

Let G be a finite group, and partition the elements of G into disjoint blocks by pairing the elements with
their inverses (and if an element is its own inverse, make it a block by itself). That is, if the elements of G
are {s1, s2, . . . , sa, t1, t

−1
1 , t2, t

−1
2 , . . . , tb, t

−1
b }, where the sk = s−1

k and the tk 6= t−1
k , then we will obtain the

partition:

P(G) =
{
{s1}; {s2}; . . . ; {sa}; {t1, t−1

1 }; {t2, t−1
2 }; . . . ; {tb, t−1

b }
}

. (1)

Observe that if we sample N distinct blocks from P(G), then we will obtain a symmetric set of elements,
with cardinality between N and 2N inclusive.

Theorem 2 Let G be a finite Abelian group. Form P(G) as above, and sample N distinct blocks according
to the uniform distribution on the (a + b) blocks. Let S be the union of the N samples. Then for every
ε, δ ≥ 0, as long as N ≥ C0(ε, δ) log |G|:

Pr [µ(X(G, S)) ≥ δ] ≤ ε, (2)

where the function C0(ε, δ) depends only on ε and δ, and the probability is taken with G fixed and S ranging
over all N -block samples from P(G).

In our proof of this theorem, we will not use the fact that G is Abelian until the very end; this will put
us into position to propose the following conjecture regarding the non-Abelian case:
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Conjecture 1 Let G be an arbitrary finite group, and let R be its number of distinct irreducible repre-
sentations. Form P(G) as above, and sample N distinct blocks according to the uniform distribution on the
(a + b) blocks. Let S be the union of the N samples. Then for every ε, δ ≥ 0, as long as N ≥ C(ε, δ) log R:

Pr [µ(X(G, S)) ≥ δ] ≤ ε, (3)

where the function C(ε, δ) depends only on ε and δ, and the probability is taken with G fixed and S ranging
over all N -block samples from P(G).

2.2 Decomposition into irreducible representations

To prove Theorem 2, we begin by passing to irreducible representations. From this point on, let us disregard
the fact that G is Abelian. First, consider the group algebra C[G], and let α be the element in C[G] defined
by:

α =
1
|S|
∑
s∈S

s

Let the operator T represent the left-action of α on C[G]. If we think of C[G] as a vector space with
basis indexed by G, then the matrix representation of T with respect to this basis coincides the normalized
adjacency matrix of the Cayley graph X(G, S). This yields the immediate consequence that T is Hermitian,
and shows that it suffices to characterize the second-largest eigenvalue (with respect to absolute value) of T .

Next, we use the representation-theoretic Fourier Transform F , which is an algebra isomorphism from
C[G] to a product of matrix algebras:

F : C[G] −→
R∏

i=1

Mi,

where R is the number of irreducible representations of G and the Mi = Matdi×di(C), with the di corre-
sponding to the degrees of the various irreducible representations. The explicit formula for F is:

F

(∑
x∈G

axx

)
=

R⊕
i=1

(∑
x∈G

axρi(x)

)
,

where ρi : G → Mi are the various irreducible representations, expressed with respect to fixed bases.
Without loss of generality, we can choose the bases such that all ρi(x) are unitary. Since F is an isomorphism,
the eigenvalues of T are the same as the eigenvalues of the left-action of F(α) on

∏
Mi. Yet by virtue of

the direct product, we can now analyze each matrix algebra independently.
Let us focus on an arbitrary component of F(α), say the one for ρi: let Ψi = (1/|S|)

∑
s∈S ρi(s). Note

that if λ is an eigenvalue of the action of Ψi on Mi, then λ must also be an eigenvalue of the matrix Ψi

itself. Also note that since Ψi is an average of unitary matrices, the absolute values of its eigenvalues must
be bounded by 1.

Without loss of generality, suppose that ρ1 corresponds to the trivial representation ρ1 : G 7→ 1. In this
case, Ψ1 = 1, so it has eigenvalue 1. Therefore, by the previous paragraph,

µ(X(G, S)) = max
i 6=1

{λ(Ψi)} (4)

2.3 Analysis of a single irreducible representation

To simplify notation, let us now drop the indices “i.” Suppose that we have a nontrivial unitary irreducible
representation ρ : G → MatD×D(C), and let Ψ = (1/|S|)

∑
s∈S ρ(s). Since T was Hermitian, so is Ψ;

therefore,

λ(Ψ) = sup
‖v‖=1

|〈Ψv, v〉| . (5)
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Lemma 1 There exists a constant c such that for any dimension n and any ζ ≥ 0, the real unit sphere
Sn ⊂ Rn+1 can be covered by an ζ-net of cardinality bounded by (c/ζ)n. We define a ζ-net to be a collection
of points for which every point on Sn is within distance ζ of some point of the net. Note that this means
that the complex unit sphere S2n−1 ⊂ Cn can be covered by a ζ-net of cardinality bounded by (c/ζ)2n−1.

Proof: We inductively prove this for c = 2π. For S1, we clearly can accomplish this with dπ/ζe points;
therefore, for sufficiently small ζ, it can definitely be done with cardinality bounded by 2π/ζ. To proceed from
Sk to Sk+1, observe that we can inductively cover the hypercylinder Sk × [−π/2, π/2] by (c/ζ)k × dπ/(2ζ)e
points, so we can definitely cover that hypercylinder by (c/ζ)k+1 points. Finally, we obtain a covering of
Sn+1 from our covering of the hypercylinder via the contractive map (ξ; t) 7→ (ξ cos t; sin t), where ξ is an
n-vector and t is a scalar. �

Let us apply Lemma 1; fix an ζ-net {vk}M
1 of S2D−1, with cardinality M ≤ (c/ζ)2D−1. Equation (5)

becomes:

λ(Ψ) = max
1≤k≤M

{
sup

v∈B′(vk,ζ)

|〈Ψv, v〉|

}
, (6)

where B′(vk, ζ) denotes the intersection, in CD, of S2D−1 with the ball with center vk and radius ζ.

Lemma 2 If v, vk ∈ S2D−1, and ‖v − vk‖ ≤ ζ, then | 〈Ψv, v〉 − 〈Ψvk, vk〉 | ≤ 2ζ.

Proof: Let ν = v−vk. Since Ψ is an average of unitary matrices, its matrix norm is bounded by 1; therefore:

| 〈Ψ(vk + ν), vk + ν〉 − 〈Ψvk, vk〉 | = | 〈Ψ(vk + ν), ν〉+ 〈Ψν, vk〉 |
≤ |〈Ψ(vk + ν), ν〉|+ |〈Ψν, vk〉|
≤ ‖Ψ‖ · ‖vk + ν‖ · ‖ν‖+ ‖Ψ‖ · ‖ν‖ · ‖vk‖
≤ 1 · 1 · ζ + 1 · ζ · 1 = 2ζ

�

Applying Lemma 2, we pass from equation (6) to:

λ(Ψ) ≤ max
1≤k≤M

|〈Ψvk, vk〉|+ 2ζ. (7)

Next, we isolate the vk as follows:

Pr [λ(Ψ) ≥ δ] ≤ Pr [∃k s.t. |〈Ψvk, vk〉|+ 2ζ ≥ δ] ≤
M∑

k=1

Pr [|〈Ψvk, vk〉| ≥ δ − 2ζ] (8)

Our next objective is to study the distribution of 〈Ψv, v〉 for fixed v. We shall show that we can uniformly
bound this distribution; furthermore, our result will be independent of v, so we will be able to apply it to
all terms of the above sum.

2.4 Analysis along a single vector

Let v be a fixed unit vector in CD. We can split our inner product into:

〈Ψv, v〉 =

〈
1
|S|

(∑
s∈S

ρ(s)

)
v, v

〉
=

1
|S|
∑
s∈S

〈ρ(s)v, v〉 . (9)

Regroup the terms in the sum as follows: recall that S was formed by accumulating blocks from our
initial partition P(G); group the ρ(s) according to those blocks. We will obtain the form:
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∑
s∈S

ρ(s) =
N∑

i=1

Hi,

where the (distinct) Hi are Hermitian matrices that are either of the form ρ(s) or (ρ(t) + ρ(t−1)), where the
s and t have the same meanings as in Section 2.1. Hence equation (9) becomes:

〈Ψv, v〉 =
1
|S|

N∑
i=1

〈Hiv, v〉 . (10)

To simplify notation, let us define a functional fv on the set of blocks in P(G); for a block B, let

fv(B) =

〈(∑
s∈B

ρ(s)

)
v, v

〉
Observe that we defined our blocks so that each

∑
s∈B ρ(s) would be Hermitian, because ρ is a unitary

representation. Therefore, fv is a real functional, parameterized by v. Furthermore, since we formed S by
sampling blocks without replacement, our (stochastic) sum in equation (10) is actually just:

〈Ψv, v〉 =
N

|S|
IN , (11)

where IN is the sample mean of N elements sampled without replacement from the population I =
{fv(B)}B∈P(G), with respect to the uniform distribution. This population has a special property:

Lemma 3 The mean of the population I = {fv(B)}B∈P(G) is zero.

Proof: This calculation can be performed explicitly. Let φ =
∑

s∈G ρ(s). Then:

∑
B∈P(G)

fv(B) =
∑
s∈G

〈ρ(s)v, v〉 =

〈(∑
s∈G

ρ(s)

)
v, v

〉
= 〈φv, v〉 (12)

Now let ρ∗ : G 7→ (id)D be the trivial representation on MatD×D(C). For every s ∈ G, ρ∗(s)◦φ = φ◦ρ(s).
By Schur’s Lemma [7], since ρ was assumed nontrivial, we must have φ ≡ 0. Therefore, the mean is zero. �

2.5 Specialization to Abelian case

We now proceed to prove Theorem 2. In this section, we shall finally make the assumption that G is Abelian;
however, the only things we derive from the Abelian property are that all irreducible representations of G
are one-dimensional, and that there are |G| of them (i.e. R = |G|). To obtain a large-deviation bound on
〈Ψv, v〉, we use one of Hoeffding’s inequalities from [4]:

Fact 2 (Hoeffding, 1963) Let a population C consist of n real values c1, c2, . . . , cn, such that all of the ci lie
in the interval [−2, 2] and their mean is zero. Let X denote the sample mean of N elements taken without
replacement from C. Then:

Pr
[
X ≥ t

]
≤ e−

1
2 Nt2 (13)

We shall use the following immediate corollary of that fact:

Corollary 1 Start with the same setup as Fact 2. Now suppose that k is a positive constant bounded by 1.
Then:

Pr
[
k|X| ≥ t

]
≤ 2e−

1
2 Nt2 (14)
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Since our representation is unitary and |B| ≤ 2, we immediately satisfy the condition fv(B) ∈ [−2, 2].
Also, by definition of S, N ≤ |S|, so our k in Corollary 1 is bounded by 1. Lemma 3 secures the remaining
condition of Fact 2; therefore, we have:

Pr [|〈Ψv, v〉| ≥ δ − 2ζ] = Pr
[

N

|S|
∣∣IN

∣∣ ≥ δ − 2ζ

]
≤ 2e−

1
2 N(δ−2ζ)2

Pr [λ(Ψi) ≥ δ] ≤
M∑

k=1

Pr [|〈Ψvk, vk〉| ≥ δ − 2ζ] ≤ M · 2e−
1
2 N(δ−2ζ)2

Pr [µ(X(G, S)) ≥ δ] = Pr
[
max
i 6=1

{λ(Ψi)} ≥ δ

]
≤

R∑
i=2

Pr [λ(Ψi) ≥ δ] ≤ (R− 1)M · 2e−
1
2 N(δ−2ζ)2

Since our dimension D is 1, Lemma 1 tells us that M ≤ c/ζ. Using the fact that R = |G|,

Pr [µ(X(G, S)) ≥ δ] ≤ (|G| − 1)
(

c

ζ

)
· 2e−

1
2 N(δ−2ζ)2

≤ |G|
(

4c

δ

)
· 2e−

1
8 Nδ2

by choosing the particular value of δ/4 for ζ

Therefore, for any finite Abelian1 group G, we can accomplish Pr [µ(X(G, S)) ≥ δ] ≤ ε for all N ≥
C0(ε, δ) log |G|, where the multiplicative constant C0 depends only on ε and δ.

�

2.6 Non-Abelian Case

In this section, we use our results from Section 2.4 to motivate Conjecture 1. We drop Section 2.5’s assump-
tion that D = 1, and continue from where we left off at the end of Section 2.4. We first show that Conjecture
1 is a consequence of the following conjecture:

Conjecture 2 Let IN have the same meaning as in equation (11). Then there exist some positive constants
α and β, independent of N , D, and G, such that:

Pr
[∣∣IN

∣∣ ≥ t
]
≤ αe−βDNt2 (15)

From a heuristic point of view, this means that D and N should appear as a fundamental unit; that is,
our averages really have sample size DN , not just N .

To establish the connection between our two conjectures, we continue with the analogue of what we did
with Corollary 1.

Pr [|〈Ψv, v〉| ≥ δ − 2ζ] = Pr
[

N

|S|
∣∣IN

∣∣ ≥ δ − 2ζ

]
≤ αe−βDN(δ−2ζ)2

Pr [λ(Ψi) ≥ δ] ≤
M∑

k=1

Pr [|〈Ψvk, vk〉| ≥ δ − 2ζ] ≤ M · αe−βDN(δ−2ζ)2

≤
(

c

ζ

)(2D−1)

· αe−βDN(δ−2ζ)2 (by Lemma 1)

≤ α exp
{

(2D − 1) log
(

c

ζ

)
− βDN(δ − 2ζ)2

}
1In fact, more is true; our analysis remains valid as long as D is uniformly bounded by some constant, over all possible

irreducible representations of the groups under consideration. For example, our proof will still work if we include the family of
Dihedral groups, because all of their D are bounded by 2.
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Now, as long as ζ ≤ c and βN(δ − 2ζ)2 ≥ 2 log(c/ζ), we have:

Pr [λ(Ψi) ≥ δ] ≤ α exp
{

D

[
2 log

(
c

ζ

)
− βN(δ − 2ζ)2

]}
≤ α exp

{
2 log

(
c

ζ

)
− βN(δ − 2ζ)2

}
≤ α

(
c

ζ

)2

e−βN(δ−2ζ)2

Pr [µ(X(G, S)) ≥ δ] ≤
R∑

i=2

Pr [λ(Ψi) ≥ δ] ≤ (R− 1)α
(

c

ζ

)2

e−βN(δ−2ζ)2

Once again, the arbitrary choice of ζ = δ/4 yields the fact that for any finite group G, we have
Pr [µ(X(G, S)) ≥ δ] ≤ ε for all N ≥ C(ε, δ) log R, where C depends2 only on ε and δ.

�

3 Support for Conjecture 2

We conclude this paper by providing two heuristic arguments that support our conjecture. The first uses
the Central Limit Theorem, and the second studies the nature of the population I = {fv(B)}B∈P(G).

3.1 Central Limit Theorem

We already know from Lemma 3 that the mean of I is zero. Let us estimate the variance. Suppose that the
partition P(G) is as in equation (1). We then have:

σ2 =
1
|I|

∑
B∈P(G)

fv(B)2

=
1

a + b

(
a∑

i=1

〈ρ(si)v, v〉2 +
b∑

i=1

〈
(ρ(ti) + ρ(t−1

i ))v, v
〉2)

=
1

a + b

(
a∑

i=1

〈ρ(si)v, v〉2 +
b∑

i=1

〈ρ(ti)v, v〉2 +
b∑

i=1

〈
ρ(t−1

i )v, v
〉2

+ 2
b∑

i=1

〈ρ(ti)v, v〉
〈
ρ(t−1

i )v, v
〉)

=
1

a + b

∑
g∈G

〈ρ(g)v, v〉2 + 2
b∑

i=1

〈ρ(ti)v, v〉
〈
ρ(t−1

i )v, v
〉

Let us perform a unitary change-of-basis so that v becomes the first basis element. Let the new matrices
be ρ′(g) = (rij(g)); we shall use the following corollary to Schur’s Lemma from [7]:

Fact 3 (from Serre) ∑
g∈G

r11(g)r11(g−1) =
|G|
D

Our change of basis transforms our last equation into:
2The constraint βN(δ − 2ζ)2 ≥ 2 log(c/ζ) does not cause any problems because it is independent of G.
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σ2 =
1

a + b

∑
g∈G

r11(g)2 + 2
b∑

i=1

r11(ti)r11(t−1
i )


=

1
a + b

∑
g∈G

r11(g)2 +
∑
g∈G

|r11(g)|2 −
a∑

i=1

|r11(si)|2
 since r11(g−1) = r11(g)

≤ 1
a + b

∑
g∈G

|r11(g)|2 +
∑
g∈G

|r11(g)|2 −
a∑

i=1

|r11(si)|2


≤ 2|G|
D(a + b)

Applying the Central Limit Theorem (with a correction factor because we are sampling without replace-
ment), we obtain that:

IN ≈ Normal
(

0,
2|G|

DN(a + b)
a + b−N

a + b− 1

)
(16)

Hence the distribution of IN has (approximately) thinner tails than Normal(0, 4/(ND)). Use the following
estimate from [3]:

Fact 4 (from Feller) Let Z be the standard Normal random variable. For every x ≥ 0:

Pr [|Z| ≥ x] ≤ min
{

1,
1
x

e−x2/2

}

Therefore, there exists a positive constant α such that Pr [|Z| ≥ x] ≤ αe−x2/2. This implies that there
exists a positive constant β for which:

Pr
[∣∣IN

∣∣ ≥ t
]
≤ αe−βDNt2 ,

as long as our Central Limit approximation is sufficiently tight.

3.2 Population I
In the Abelian case, we used Hoeffding’s Inequality to obtain our large-deviation bound. That inequality
only needed the boundedness of the population I; it did not take into account the fact that the variance
scaled as 1/D. This scaling factor is quite interesting, because it hints that the individual elements of I may
themselves be D-wise means, from some deeper population. Then IN would be a DN -wise mean, which
would support our hypothesis that DN should appear as a fundamental unit in a large-deviation bound.

Let us express I in an even more suggestive form. Consider some fv(B) =
〈(∑

s∈B ρ(s)
)
v, v
〉
, and

let HB =
∑

s∈B ρ(s). Note that by construction, HB must be Hermitian, hence diagonalizable with an
orthonormal basis of eigenvectors, {ek}D

1 . Let the corresponding eigenvalues be {λk}D
1 . Express v in that

basis; suppose that v =
∑

ckek. Then fv(B) =
∑

c2
kλk, and furthermore, since the basis was orthonormal,∑

c2
k = 1. Therefore, fv(B) is a D-wise weighted mean of the λk, which also happen to be bounded by

[−2, 2] because |B| ≤ 2 and ρ(s) are unitary. The weights {ck}D
1 are not necessarily balanced, however, so it

remains to study how well-balanced they are under large D.
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