21-127 Concepts Homework 5: Solutions

4.20 a) First check injectivity:

$$
\begin{aligned}
f((x, y))=f((u, v)) & \Rightarrow(a x-b y, b x+a y)=(a u-b v, b u+a v) \\
& \Rightarrow a x-b y=a u-b v \wedge b x+a y=b u+a v \\
& \Rightarrow a(x-u)=b(y-v) \wedge b(x-u)=a(v-y) \\
& \Rightarrow a b(x-u)=b^{2}(y-v) \wedge a b(x-u)=-a^{2}(y-v) \\
& \Rightarrow\left(b^{2}+a^{2}\right)(y-v)=0 \\
& \Rightarrow y-v=0 \quad\left(a^{2}+b^{2} \neq 0\right) \\
& \Rightarrow y=v \\
& \Rightarrow a(x-u)=0 \wedge b(x-u)=0 \\
& \Rightarrow x-u=0 \quad(\neg a=b=0) \\
& \Rightarrow x=u \\
& \Rightarrow(x, y)=(u, v)
\end{aligned}
$$

Now check surjectivity; given $(r, s) \in \mathbb{R}^{2}$ we seek (x, y) such that $f((x, y))=$ (r, s). Solving the resulting simultaneous equation suggests $(x, y)=\left(\frac{a r+b s}{a^{2}+b^{2}}, \frac{a s-b r}{a^{2}+b^{2}}\right)$ so we check this works:

$$
\begin{aligned}
f\left(\left(\frac{a r+b s}{a^{2}+b^{2}}, \frac{a s-b r}{a^{2}+b^{2}}\right)\right) & =\left(a \frac{a r+b s}{a^{2}+b^{2}}-b \frac{a s-b r}{a^{2}+b^{2}}, b \frac{a r+b s}{a^{2}+b^{2}}+a \frac{a s-b r}{a^{2}+b^{2}}\right) \\
& =\left(\frac{a^{2} r+a b s-a b s+b^{2} r}{a^{2}+b^{2}}, \frac{a b r+b^{2} s+a^{2} s-a b r}{a^{2}+b^{2}}\right) \\
& =(r, s)
\end{aligned}
$$

b) Our work in (a) suggests inverse $g(x, y)=\left(\frac{a x+b y}{a^{2}+b^{2}}, \frac{a y-b x}{a^{2}+b^{2}}\right)$, we must check that $f \circ g=i d$ and $g \circ f=i d$,

$$
\begin{aligned}
f(g((x, y))) & =f\left(\left(\frac{a x+b y}{a^{2}+b^{2}}, \frac{a y-b x}{a^{2}+b^{2}}\right)\right) \\
& =\left(a \frac{a x+b y}{a^{2}+b^{2}}-b \frac{a y-b x}{a^{2}+b^{2}}, b \frac{a x+b y}{a^{2}+b^{2}}+a \frac{a y-b x}{a^{2}+b^{2}}\right) \\
& =\left(\frac{a^{2} x+a b y-a b y-b^{2} x}{a^{2}+b^{2}}, \frac{a b x+b^{2} y+a^{2} y-a b x}{a^{2}+b^{2}}\right) \\
& =(x, y)
\end{aligned}
$$

Note that this calculation is almost identical to the one we used to check surjectivity.

$$
\begin{aligned}
g(f((x, y))) & =g((a x-b y, b x+a y)) \\
& =\left(\frac{a(a x-b y)+b(b x+a y)}{a^{2}+b^{2}}, \frac{a(b x+a y)-b(a x-b y)}{a^{2}+b^{2}}\right) \\
& =\left(\frac{a^{2} x+b^{2} x}{a^{2}+b^{2}}, \frac{a^{2} y+b^{2} y}{a^{2}+b^{2}}\right) \\
& =(x, y)
\end{aligned}
$$

c) f describes a rotation about the origin. For example for $a=0, b=1$ we have $f((x, y))=(-y, x)$ which is a rotation by 90 degrees anticlockwise.
4.21 Define f from \{even size subsets\} to \{odd size subsets\} by $f(A)=A \triangle\{1\}$. So if 1 was absent we add it, and if it was present we remove it; either way we change the parity of $|A|$ from even to odd. We can also define g from \{odd size subsets\} to \{even size subsets\} by $g(A)=A \triangle\{1\}$. Then

$$
f(g(A))=f(A \triangle 1)=(A \triangle 1) \triangle 1=A \triangle(1 \triangle 1)=A \triangle \emptyset=A
$$

and

$$
g(f(A))=f(A \triangle 1)=(A \triangle 1) \triangle 1=A \triangle(1 \triangle 1)=A \triangle \emptyset=A
$$

So g is the inverse of f and hence f is bijective.
Note that even though f and g are defined in the same way they are not the same function because they have different domains and codomains.
4.24 No, for example $f(x)=g(x)=x$. Then $f g(x)=f(x) g(x)=x^{2}$ and this is not surjective; for example -1 is not in its image.
4.39 Observe that $f(f(x))=f(a(x+b)-b)=a([a(x+b)-b]+b)-b=$ $a^{2}(x+b)-b$. We guess that $f^{n}(x)=a^{n}(x+b)-b$ and try to prove this by induction.

Base case $n=1$: immediate.

Given for n,

$$
\begin{aligned}
f^{n+1}(x) & =f\left(f^{n}(x)\right) \\
& =f\left(a^{n}(x+b)-b\right) \\
& =a\left(\left[a^{n}(x+b)-b\right]+b\right)-b \\
& =a^{n+1}(x+b)-b
\end{aligned}
$$

5.3 Observe that the numbers on opposite sides of a die sum to 7 (there are either $1 \& 6,2 \& 5$ or $3 \& 4)$. So for any roll totalling x we can turn over the two dice and get a roll totalling $(7+7)-x=14-x$. The act of turning over is a bijection (it is its own inverse) so there are equal numbers of rolls totalling x and totalling $14-x$.
5.6 Number the elements of A and B from 1 to n and regards bijection from A to B as bijections from $[n]$ to $[n]$. Such a bijection is just a permutation, and the number of these is $n!$.
5.17 Note $n, m<k$ and without loss of generality $n \leq m$. Dividing through by n ! we get $1+\frac{m!}{n!}=\frac{k!}{n!}$. But $\frac{m!}{n!}$ divides $\frac{k!}{n!}$ and the only way this is possible is if $\frac{m!}{n!}=1$. Then $m!=n!$ so $m=n$; and $k(k-1) . .(n+1)=\frac{k!}{n!}=2$ so $k=2$ and $n=1$. This gives $(n, m, k)=(1,1,2)$ as the only possibility.
4.15 Proof by induction on k,

Base case $k=1$: We can weigh an object of weight 1 with a weight of 1 .
Given for k : We can weight $1, \ldots, \frac{3^{k}-1}{2}$ already by hypothesis. We also now have a new weight 3^{k}. By placing this on one side and the previous weight combinations on the other we can get weights $3^{k}-1$ through $3^{k}-\frac{3^{k}-1}{2}=\frac{3^{k}+1}{2}$. So this gives us all weights up to $3^{k}-1$, and we have 3^{k} just taking the last weight by itself. Finally we have weights $3^{k}+1$ through $3^{k}+\frac{3^{k}-1}{2}=\frac{3^{k+1}-1}{2}$ by putting the 3^{k} weight on the same side as our earlier combinations.
4.34 a) True. Given that h is injective,

$$
f(x)=f(y) \Rightarrow g(f(x))=g(f(y)) \Rightarrow h(x)=h(y) \Rightarrow x=y
$$

so f is injective.
b) False. For example $A=\{1\}, B=\{2,3\}, C=\{4\}, f(1)=2$, $g(2)=g(3)=4$. Then g is not injective but $h(1)=4$ so h is.
c) False. Using the same counterexample as (b).
d) True. Given $z \in C, h$ is surjective so we have $x \in A$ such that $g(f(x))=h(x)=z$. Define $y=f(x)$; then $y \in B$ and $g(y)=z$.
4.50 We want to find all the A_{n} for n odd, as these are the places we will use g^{-1}; everywhere else we will use f. We observe $B_{0}=B \backslash i m(f)=\{0\}$. Then A_{1} is all the members of A with exactly one ancestor, i.e. the children of members of B_{0} (which have no ancestors), so $A_{1}=\{g(0)\}=\left\{\frac{1}{2}\right\}$. Then A_{3} contains the grandchildren of these children so $A_{3}=\left\{g\left(f\left(\frac{1}{2}\right)\right)\right\}=\left\{g\left(\frac{1}{2}\right)\right\}=$ $\left\{\frac{3}{4}\right\}$. Continuing in the vein $A_{2 n-1}=\left\{1-\frac{1}{2^{n}}\right\}$.So,

$$
h(x)= \begin{cases}g^{-1}(x)=2 x-1 & x=1-\frac{1}{2^{n}} \text { for some } n \in \mathbb{N} \\ f(x)=x & \text { otherwise }\end{cases}
$$

4.51 We could take an injection in each direction and then use the SchroederBernstein method as in question 4.50 to get a bijection. But it's faster just to make up a function that fills in the gaps:

$$
h(x)= \begin{cases}0 & x=\frac{1}{2} \\ \frac{1}{n-2} & x=\frac{1}{n} \text { for } n \in \mathbb{N}, n \geq 3 \\ x & \text { otherwise }\end{cases}
$$

Extra 1 In any disc take two distinct points (x, y) and (u, v). Now by Theorem 1.10 we can find a rational between any two real numbers; take rationals p between x and u; and q between y and v. Then (p, q) lies between (x, y) and (u, v) and hence inside the disc. This tells us that inside any disc there is a member of \mathbb{Q}^{2}.

Given a disjoint arrangement of discs in \mathbb{R}^{2}, choose a member of \mathbb{Q}^{2} inside each; this defines a function from $\{\operatorname{discs}\}$ to \mathbb{Q}^{2} and the function is injective because the discs are disjoint. Hence $|\{\operatorname{discs}\}| \leq\left|\mathbb{Q}^{2}\right|=|\mathbb{N}|$ so the collection of discs is countable.

Extra 2 a) We saw in class that $\mid\{$ functions $\mathbb{N} \rightarrow \mathbb{N}\}|=|\mathbb{P}(\mathbb{N})|$, so certainly $\mid\{$ non-decreasing functions $\mathbb{N} \rightarrow \mathbb{N}\}|\leq|\mathbb{P}(\mathbb{N})|$. Given $A \in \mathbb{P}(\mathbb{N})$ define a function $f: \mathbb{N} \rightarrow \mathbb{N}$ iteratively by $f(1)=1$ and,

$$
f(n+1)= \begin{cases}f(n) & n \notin A \\ f(n)+1 & n \in A\end{cases}
$$

Note that the resulting function is non-decreasing. Also this process of changing a set into a function constitutes an injective function from $\mathbb{P}(\mathbb{N})$
to $\{$ non-decreasing functions $\mathbb{N} \rightarrow \mathbb{N}$ \} because we can find whether n was in A by checking whether $f(n+1)-f(n)=1$. Hence we have $|\mathbb{P}(\mathbb{N})| \leq$ $\mid\{$ non-decreasing functions $\mathbb{N} \rightarrow \mathbb{N}\} \mid$ so by Schroeder-Bernstein \mid non-decreasing functions $\mathbb{N} \rightarrow$ $\mathbb{N}\}|=|\mathbb{P}(\mathbb{N})|$.
b) There are certainly at least $|\mathbb{N}|$-many non-increasing functions, for example the constant functions. Observe that a non-increasing function can only decrease a finite number of times, and must eventually stabilise, say by n so $\forall m \geq n: f(m)=f(n)$. Now we can regard this function as a finite list $\{f(1), f(2), \ldots, f(n)\}$, giving us a mapping from $\{$ non-increasing functions $\mathbb{N} \rightarrow$ $\mathbb{N}\}$ to \{finite lists of naturals\}; this mapping is injective because the function is recoverable from the list (just take $f(m)=f(n)$ for $m>n$). Hence $\mid\{$ non-increasing functions $\mathbb{N} \rightarrow \mathbb{N}\}|\leq|\{$ finite lists of naturals $\}|=|\mathbb{N}|$ (saw in class). So by Schroeder Bernstein \mid non-increasing functions $\mathbb{N} \rightarrow \mathbb{N}\} \mid=$ $|\mathbb{N}|$.

Extra 3 We have injective $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by $f(x)=(x, 0)$. And we have injective $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by taking ($c_{n} \ldots c_{1} . a_{1} a_{2} a_{3} \ldots, d_{n} \ldots d_{1} . b_{1} b_{2} \ldots$) to $c_{n} d_{n} c_{n-1} \ldots d_{2} c_{1} d_{1} . a_{1} b_{1} a_{2} b_{2} \ldots$. I.e. we interleave their decimal expansions, and this will retain all the information from the original two reals so it is injective. Whence by Schroder Bernstein $\left|\mathbb{R}^{2}\right|=|\mathbb{R}|$.

Upon first seeing this proof, the great mathematician Georg Cantor wrote 'Je le vois, mais je ne crois pas' - 'I see it but I don't believe it'.

