21-127 Concepts Homework 4: Solutions

4.5 Any set with at least two elements. If the set is empty the only bijection is the vacuous one of doing nothing, which is the identity (it satisfies $\forall x f(x)=x)$. If there is a single element, say a then any bijection must take a to a and hence be the identity. If there are at least two distinct elements, say a and b then we can define a non-identity bijection by,

$$
f(x)=\begin{array}{cc}
b & x=a \\
a & x=b \\
x & x \neq a, b
\end{array}
$$

4.11 In both cases multiplication by 2 is injective as $2 x=2 y \Rightarrow x=y$. From \mathbb{R} to \mathbb{R} it is surjective because for any $x \in \mathbb{R}$ we have $2 \cdot \frac{x}{2}=x$ so x is in the image. But from \mathbb{Z} to \mathbb{Z} it is not because 3 is not in the image (there is no integer that when multiplied by 2 gives 3).
4.23 a) This is not injective as $f(0)=f(1)=1$. It is surjective as is suggested by its graph; as $x \rightarrow \infty, f(x) \rightarrow \infty$ and as $x \rightarrow-\infty, f(x) \rightarrow-\infty$. It is a bijection from $(1, \infty)$ to $(1, \infty)$.
b) This is not injective as $f(0)=f(4)=1$. It is not surjective as the image of cos is restricted to $[-1,1]$ and so does not contain, for example, 2. It is a bijection from $(0,1)$ to $(0,1)$.
4.29 a) $f(2)=f\left(\frac{1}{2}\right)=\frac{2}{5}$ so f is not injective. $g(1)=g(-1)=\frac{1}{2}$ so g is not injective. We prove that h is injective:

$$
\begin{aligned}
h(x)=h(y) & \Rightarrow \frac{x^{3}}{1+x^{2}}=\frac{y^{3}}{1+y^{2}} \\
& \Rightarrow x^{3}\left(1+y^{2}\right)=y^{3}\left(1+x^{2}\right) \\
& \Rightarrow\left(x^{3}-y^{3}\right)+\left(x^{3} y^{2}-y^{3} x^{2}\right)=0 \\
& \Rightarrow(x-y)\left(x^{2}+x y+y^{2}\right)+(x-y) x^{2} y^{2}=0 \\
& \Rightarrow x=y \vee x^{2}+x y+y^{2}+x^{2} y^{2}=0 \\
& \Rightarrow x=y \vee\left(x+\frac{y}{2}\right)^{2}+\frac{3}{4} y^{2}+x^{2} y^{2}=0
\end{aligned}
$$

Notice that every part of this sum is a square and so ≥ 0. So the only way the sum can be 0 is if every part is 0 , i.e. $x=y=0$. Hence either way $x=y$.
b) Note that for all x,

$$
\begin{aligned}
& \left(x-\frac{1}{2}\right)^{2} \geq 0 \\
\Rightarrow & x^{2}-x+\frac{1}{4} \geq 0 \\
\Rightarrow & x^{2}+1 \geq x \\
\Rightarrow & 1 \geq \frac{x}{1+x^{2}} \\
\Rightarrow & f(x) \leq 1
\end{aligned}
$$

So 2 is not in the image of f, so f is not surjective.
Note that the numberator and denominator of g are always ≥ 0 so $g(x)$ is always positive; whence g does not have -1 in its image and is not surjective.
4.37 Given that $f \circ f$ is injective,

$$
f(x)=f(y) \Rightarrow f(f(x))=f(f(y)) \Rightarrow x=y
$$

So f is injective.
4.47 We have a bijection from \mathbb{N} to the even naturals given by $f(x)=2 x$. And we have a bijection to the odd naturals $g(x)=2 x-1$.

