
21-127 Concepts Homework 3: Solutions

3.23 There is a problem in the first inductive step, going from n = 0 to
n = 1. We use that an−1 = 1 where here n = 0 so n− 1 = −1 and we have
not proved that a−1 = 1 (it is in fact false for most a).

3.27 By induction on n:
Base case n = 1: LHS = 1

1.4 = 1
4

RHS = 1
4

Inductive step: given for n

n+1∑
i=1

1

(3i− 2)(3i + 1)
=

n∑
i=1

1

(3i− 2)(3i + 1)
+

1

(3n + 1)(3n + 4)

=
n

3n + 1
+

1

(3n + 1)(3n + 4)

=
n(3n + 4) + 1

(3n + 1)(3n + 4)

=
3n2 + 4n + 1

(3n + 1)(3n + 4)

=
(3n + 1)(n + 1)

(3n + 1)(3n + 4)

=
n + 1

3n + 4

3.44 It is possible for n ∈ {3, 6, 9, 10, 12, 13, 15, 16, 18} and not for n ∈
{1, 2, 4, 5, 7, 8, 11, 14, 17} by inspection. We will prove by strong induction
that it is possible for all n ≥ 18

If n = 18 take 3 + 3 + 3 + 3 + 3 + 3 + 3
If n = 19 take 10 + 3 + 3 + 3
If n = 20 take 10 + 10
If n ≥ 21 then n − 3 ≥ 18 so by strong induction hypothesis we know

that n−3 is possible. Take this combination and add an additional 3 to get n.
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3.49 a) We first compute some small values:

n 3n 2n+1 holds?

1 3 4 no
2 9 8 yes
3 27 16 yes
4 81 32 yes

We now prove by induction that the inequality holds for all n ≥ 2
Base case: done above
Given for n, 3n+1 = 3.3n ≥ 3.2n+1 ≥ 2.2n+1 = 2n+2

b)

n 2n n + 12 holds?

1 2 4 no
2 4 9 no
3 8 16 no
4 16 25 no
5 32 36 no
6 64 49 yes
7 128 64 yes

We prove by induction that the inequality holds for n ≥ 6
Base case: done above
Given for n

2n+1 = 2.2n

≥ 2(n + 1)2

= 2n2 + 4n + 2

≥ n2 + 4n + 4

= (n + 2)2
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c)

n 3n+1 n4 holds?

1 9 1 yes
2 27 16 yes
3 81 81 yes
4 243 256 no
5 729 625 yes
6 2187 1296 yes

We prove by induction that the inequality holds for n ≥ 5
Base case: done above
Given for n

3n+2 = 3.3n+1

≥ 3n4

= n4 +
4

5
n4 +

6

25
n4 +

4

125
n4 +

1

625
n4 +

579

625
n4

≥ n4 + 4n3 + 6n2 + 4n3 + 1 (n ≥ 5)

= (n + 1)4

Note that we had to use that n ≥ 5 in our induction step, as it is not true
that the inequality holding for n = 3 implies that it holds for n = 4.

d)

n n3 + (n + 1)3 (n + 2)3 holds?

1 9 27 no
2 35 64 no
3 91 125 no
4 189 216 no
5 341 343 no
6 559 512 yes
7 855 729 yes

We prove by induction that the inequality holds for n ≥ 6
Base case: done above
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Given for n

(n + 1)3 + (n + 2)3 = (n3 + 3n2 + 3n + 1) + (n3 + 6n2 + 12n + 8)

= 2n3 + 9n2 + 15n + 6

= n3 + 9n2 + (15n +
12

36
n3) + (6 +

21

216
n3) +

41

72
n3

≥ n3 + 9n2 + 27n + 27 (n ≥ 6)

= (n + 3)2

3.58 a) Covered in lectures
b) Proof by induction on k
Base case k = 1: a 2x2 chessboard missing one square is just a single

L-tile.
Given for k: Given a 2k+1 by 2k+1 chessboard with one square missing,

regard it as four 2k by 2k quadrants. One of these has the missing square;
place an L-tile in the centre of the 2k+1 by 2k+1 board covering exactly one
square from each of the other three quadrants. Now we have four 2k by 2k

quadrants each missing a single square, and by hypothesis we can tile each
of these, yielding an overall tiling.

4.10 For any y ∈ R, ax + b = y has a unique solution, namely x = y−b
a .

That there is at least one gives surjectivity; that there is at most one gives
injectivity. Likewise for g.

h(x) = g(f(x))− f(g(x))

= g(ax + b)− f(cx + d)

= c(ax + b) + d− a(cx + d)− b

= bc + cd− ad− ab

So the function is not surjective as nothing maps to points in R other than
bc + cd− ad− ab and it is not injective as more than one point (in fact all
of them) maps to bc + cd− ad− ab.

4.12 a) False, e.g. f(x) = −arctan(x)
b) False, e.g. f(x) = 0
c) False, e.g.

f(x) =
1/x x 6= 0
0 x = 0
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d) True. Every real number appears in the image, so there is no bound
on the absolute value of numbers in the image.

e) False, e.g. f(x) = |x|

3.31 We will show
∏n

i=2(1−
1
i2

) = n+1
2n

Base case n = 2: LHS = 1− 1
4 = 3

4
RHS = 3

4
Given for n,

n+1∏
i=2

(
1− 1

i2

)
=

n∏
i=2

(
1− 1

i2

)
.

(
1− 1

(n + 1)2

)
=

(
n + 1

2n

)(
(n + 1)2 − 1

(n + 1)2

)
=

(n + 1)(n2 + 2n)

2n(n + 1)2

=
(n + 2)

2(n + 1)

3.38 We will show by induction on n that player 2 can win a game in which
the target is 4n.

Base case n = 0: player 2 has won before the game even starts.
Given for n: By hypothesis player 2 can get to 4n. Then player 1 must

say 1,2 or 3. In response player 2 should say 3,2 or 1 respectively giving a
total of 4n + 4.

3.39 Observe that in going from an to a(n + 1) we add an outer ring of 6n
dots. And we start with a1=1 So

an = 1 +

n−1∑
i=1

6i

= 1 + 6.
1

2
n(n− 1)

= 3n2 − 3n + 1
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And

n∑
k=1

ak =
n∑

k=1

3n2 − 3n + 1

= 3.
1

6
n(n + 1)(2n + 1)− 3.

1

2
n(n + 1) + n

=
1

2
(2n3 + 3n2 + n− 3n2 − 3n + 3n)

= n3

3.59 Note that an L-tile has an area of 3, so to be coverable a rectangle
must have an area divisible by 3; so we will only consider rectangles with
dimensions (3m,n)

Note that we can build a (3,2) rectangle by combining two L-tiles.
(3m, 2n): Possible, splitting into multiple (3,2) rectangles.
(3, 2n + 1): Not possible, proof by induction on n. For n = 0 (3, 1) is

clearly impossible. Given that (3, 2n + 1) is impossible, the only way to
start covering one end of (3, 2n+ 3) is using a pair of L-tiles forming a (3, 2)
rectangle (check the cases) and then we are left with a (3, 2n + 1) rectangle
which we know by hypothesis is impossible to cover.

(6, 2n + 1): Possible for n ≥ 1, proof by induction on n. For n = 1 we
have seen that (6, 3) is possible. Given a covering for (6, 2n + 1) add two
(3, 2) rectangles to extend to a covering of (6, 2n + 3)

(9, 2n+1): Possible for n ≥ 2 only. We have seen that (9, 3) is not possi-
ble. Observe that (9, 5) is possible by an explicit construction (it’s not built
up from smaller blocks, but it’s not hard to find one). Then by induction
we can add (3, 2) rectangles to cover any (9, 2n + 1) for larger n.

(6m, 2n + 1): Possible for n ≥ 1 using multiple copies of the (6, 2n + 1
covering.

(6m+ 3, 2n+ 1): Possible for n ≥ 2 only. We have seen that (6m+ 3, 3)
is not possible. Otherwise split into one copy of (9, 2n+ 1) and some copies
of (6, 2n + 1) and use the coverings for these.

So in summary a covering of (p, q) is possible if and only if pq is divisible
by 3, except if p = 3 and q is odd or vice-versa, in which case it is not possible.

3.65 We prove by induction on n that if there are n thieves then they will
be revealed on the nth day.

Base case n = 1: If there is only a single thief, his master will see that
there are no other thieves and, knowing that there is at least one, conclude
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that his apprentice is a thief and denounce him on day 1.
Given for n. If there are n+1 thieves then each master whose apprentice

is a thief will see n other thieves. He knows by the inductive hypothesis that
if there were n thieves then they would be revealed on the nth day. At the
end of the nth day he sees that this hasn’t happened so he concludes that
there must be n + 1 thieves including his own apprentice, and denounces
him on the n + 1th day.

Extra 1 Say the large disc has radius R, and the first smaller disc has ra-
dius r < R. The small disc is only able to cover points a distance 2r apart,
so it cannot cover opposite points on the edge of the large disc; hence it
can cover less than half the circumference of the large disc. Likewise the
second small disc covers less than half the circumference of the large one,
so between them they cannot cover the whole circumference, and so cannot
cover the whole disc.

Extra 2 Proof by induction on n.
Base case n = 0: ex ≥ 1 because x ≥ 0.
Given for n,

ex ≥ 1 + x +
x2

2
+ ... +

xn

n!

⇒
∫ x

0
etdx ≥

∫ x

0
1 + t +

t2

2
+ ... +

tn

n!
dx

⇒ex − 1 ≥ x +
x2

2
+ ... +

xn+1

(n + 1)!

⇒ex ≥ 1 + x +
x2

2
+ ... +

xn+1

(n + 1)!
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