1.1 Introduction to Proof: Quiz

Theorem Let a, b be positive real numbers with $a<b$. Then $\sqrt{a}<\sqrt{b}$.

Identify any mistakes in the following proofs.

Proof 1

$$
\begin{aligned}
\sqrt{a}<\sqrt{b} & \Leftarrow \sqrt{b}-\sqrt{a}>0 \\
& \Leftarrow(\sqrt{b}-\sqrt{a})(\sqrt{b}+\sqrt{a})>0 \\
& \Leftarrow(\sqrt{b})^{2}-(\sqrt{a})^{2}>0 \\
& \Leftarrow b-a>0
\end{aligned}
$$

which is true

Proof 2

Suppose not

$$
\begin{aligned}
b \leq a & \Rightarrow b-a \leq 0 \\
& \Rightarrow(\sqrt{b})^{2}-(\sqrt{a})^{2} \leq 0 \\
& \Rightarrow(\sqrt{b}-\sqrt{a})(\sqrt{b}+\sqrt{a}) \leq 0 \\
& \Rightarrow \sqrt{b}-\sqrt{a} \leq 0 \\
& \Rightarrow \sqrt{b} \leq \sqrt{a}
\end{aligned}
$$

contradiction

Proof 3

Observe that for any positive c and d such that $c<d$ we have $c^{2}<c d$ and also $c d<d^{2}$ and combining these we get $c^{2}<d^{2}$. So

$$
\begin{aligned}
\sqrt{a}<\sqrt{b} & \Leftrightarrow(\sqrt{a})^{2}<(\sqrt{b})^{2} \\
& \Leftrightarrow a<b
\end{aligned}
$$

