A well-ordered set is a structure of the form (S, \leq) such that
- \leq is a partial order on S (see Assignment 4),
- Every nonempty subset of S has a \leq-smallest element.

If (S, \leq) is a well-ordered set, we may express this by saying that the relation \leq well-orders S.

(a) Prove that (S, \leq) is a well-ordered set, then \leq is a linear order.

Solution. If (S, \leq) is a well-ordered set and $a, b \in S$, then the set $\{a, b\}$ has a \leq-smallest element, so $a \leq b$ or $b \leq a$.

(b) Suppose that (S, \leq) is a well-ordered set and P is a property such that
- (i) The smallest element of S satisfies P,
- (ii) If a is an element of S and every element of the set
 \[\{ x \in S \mid x < a \} \]
 satisfies P, then the element A satisfies P as well.

Prove that every element of S satisfies P.

[Note: This is called the Induction Principle, and it is what makes well-ordered sets important.]

Solution. Suppose that not every element of S satisfies P, and let a be the \leq-smallest element of S that does not satisfy P. Then every element of $\{ x \in S \mid x < a \}$ satisfies P, so by (ii), a satisfies P. This contradicts the choice of a.

(c) Prove that a structure is well-ordered if and only if it does not contain infinite descending chains; that is, prove that a linearly ordered set (S, \leq) is a well-ordered set if and only if there does not exist a sequence a_0, a_1, a_2, \ldots of elements of S such that $a_0 > a_1 > a_2 > \ldots$.

Solution. (\Rightarrow): If $a_0 > a_1 > a_2, \ldots$ is an infinite descending sequence in S, then the set $\{ a_0, a_1, a_2, \ldots \}$ does not have a minimum element, so S is not well-ordered.

(\Leftarrow): Suppose that S is not well-ordered, and fix a nonempty $A \subseteq S$ that does not have a minimum element. Fix $a_0 \in A$. Since a_0 is not a minimum element of A, there exists $a_1 \in A$
such that $a_0 > a_1$. Since a_1 is not a minimum element of A, there exists $a_2 \in A$ such that $a_1 > a_2$. Continuing this construction inductively, we find an infinite descending chain in A.

(d) Prove that if (S, \leq) is a well-ordered set, then there exists a structure (T, \preceq) such that $(S, \leq) \equiv (T, \preceq)$ and (T, \preceq) is not a well-ordered set.

[Hint: Use part (c) and compactness.]

Solution. Let $M = (S, \leq)$ be a well-ordered set. Let $T = \{ \varphi \mid M \models \varphi \}$, and let

$$
\Gamma = T \cup \{ c_0 > c_1, c_1 > c_2, c_2 > c_3, \ldots \},
$$

where c_0, c_1, c_2, \ldots are new constants. Any finite subset of T is easily seen to be satisfiable by interpreting the the constant symbols c_n adequately in M. Thus, by the Compactness Theorem, Γ has a model, say M^*. Since $M^* \models T$, we have $M \equiv M^*$. In particular, M is linearly ordered. However, M has an infinitely decreasing chain, so it is not well-ordered, by part (c) above.

(e) Prove that the clause “the universe is well-ordered by \leq” cannot be written in first-order; that is, prove that there does not exist a first-order sentence φ such that $(S, \leq) \models \varphi$ if and only if \leq well-orders S.

Solution. Suppose that such a sentence exists. Then, if (S, \leq) and (S^*, \leq^*) are elementarily equivalent linear ordered and one of the structures is well-ordered, the other one is well-ordered as well. However, part (c) shows how to construct two elementarily equivalent linear orders such that one of them is well-ordered and the other one is not.

2 If M is a structure in the language of arithmetic with universe M, an element a of M is said to be *finite* if there exists a natural number n such that $a \leq \bar{n}$, where, as in class, \bar{n} denotes the term

$$
\underbrace{1 + 1 + \ldots + 1}_n \text{ times}.
$$

An element of M that is not finite is said to be *infinite*.

(a) Prove that there is no first-order formula $\varphi(x)$ in the language of arithmetic such that $M \models \varphi[a]$ if and only if a is finite.
Solution. Suppose that such a formula \(\varphi(x) \) exists. Let \(N \) be the standard model of arithmetic and let \(M \) be a nonstandard model of arithmetic. Then, \(M \equiv N \), but \(N \models \forall x \varphi(x) \) and \(M \not\models \forall x \varphi(x) \), which is a contradiction.

(b) Prove that if \(M \) is a model of arithmetic with universe \(M \), then for every infinite \(a \in M \) there exists an infinite \(b < a \) in \(M \) such that \(a - b \) is infinite. [Note: Here, as in class, \(a - b \) denotes the unique \(c \in M \) such that \(b + c = a \).]

Solution. There are many ways to prove this. Here is one example. Fix a nonstandard model \(M \) of arithmetic with universe \(M \). Since \(M \) is elementarily equivalent to the standard model, \(M \models \forall x \exists y [2y \leq x \land x < 2y + 1] \).

Let \(a \) be an infinite element of \(M \) and let \(b \) be such that \(2b \leq a < 2b + 1 \). It is easy to see that if \(a \) is larger than every finite element of \(M \), so is \(b \). Moreover, for every finite \(n \), we have \(b + n < a \); hence \(a - b \) is not finite.

3 (For 21-600) An existential sentence is a sentence of the form

\[
\exists x_1 \ldots \exists x_n \varphi(x_1, \ldots, x_n),
\]

where \(\varphi(x_1, \ldots, x_n) \) is a quantifier-free formula.

Let \(S \) be a signature and let \(M \) and \(N \) be \(S \)-structures. Prove that the following conditions are equivalent:

(i) Every existential sentence that is satisfied by \(M \) is satisfied by \(N \) as well.

(ii) There exists a structure \(N' \) such that \(N' \equiv N \) and \(N' \) contains a substructure isomorphic to \(M \).

[Hint: Use problem (4) of Assignment 6.]

Solution. Proof of (i)\(\Rightarrow\)(ii): Extend the signature by adding a new constant symbol \(c_a \) for each element \(a \) in the universe of \(M \). Let \(T = \{ \varphi \mid M \models \varphi \} \) and, as in (4) of Assignment 6, let \(\Delta_M \) be the set of all sentences of the form \(\psi(c_{a_1}, \ldots, c_{a_n}) \), where \(\psi(x_1, \ldots, x_n) \) is a quantifier-free \(S \)-formula. By (4) of Assignment 6, all we have to do is to show that \(T \cup \Delta_M \) has a model. Thus, by the Compactness Theorem, it suffices to show that every finite subset of \(T \cup \Delta_M \) has a model.

Fix a finite \(\Gamma \subseteq T \cup \Delta_M \). Then there exist \(\varphi_1, \ldots, \varphi_k \in T \), constant symbols \(c_{a_1}, \ldots, c_{a_n} \), and quantifier-free \(S \)-formulas
\(\psi_1(x_1, \ldots, x_n), \ldots, \psi_l(x_1, \ldots, x_n)\) such that

\[
\Gamma = \{ \varphi_1, \ldots, \varphi_k \} \cup \{ \psi_1(c_{a_1}, \ldots, c_{a_n}), \ldots, \psi(c_{a_1}, \ldots, c_{a_n}) \}.
\]

By the definition of \(T\) and \(\Delta_M\),

\[
M \models \bigwedge_{1 \leq i \leq k} \varphi_i \land \exists x_1 \ldots \exists x_n \left(\bigwedge_{1 \leq j \leq l} \psi_j(x_1, \ldots, x_n) \right),
\]

so, by (i), there exist elements \(b_1, \ldots, b_n\) of the universe of \(M\) such that

\[
M \models \bigwedge_{1 \leq i \leq k} \varphi_i \land \bigwedge_{1 \leq j \leq l} \psi_j[b_1, \ldots, b_n].
\]

By interpreting \(c_{a_1}, \ldots, c_{a_n}\) as \(b_1, \ldots, b_n\), respectively, we conclude that \(\Gamma\) has a model. This proves \((i) \Rightarrow (ii)\).

Proof of \((ii) \Rightarrow (i)\): Let \(N'\) be as given by (ii), and let \(N'_0\) be a substructure of \(N'\) isomorphic to \(M\). Fix a quantifier-free \(S\)-formula \(\psi(x_1, \ldots, x_n)\). If

\[
M \models \exists x_1 \ldots \exists x_n \psi(x_1, \ldots, x_n),
\]

then

\[
N'_0 \models \exists x_1 \ldots \exists x_n \psi(x_1, \ldots, x_n),
\]

and hence, since \(\psi(x_1, \ldots, x_n)\) is quantifier-free, it follows by straightforward induction on the complexity of \(\psi\) that

\[
N' \models \exists x_1 \ldots \exists x_n \psi(x_1, \ldots, x_n).
\]

Since \(\psi(x_1, \ldots, x_n)\) is arbitrary, this proves \((ii) \Rightarrow (i)\).