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Abstract. The existence and uniqueness of solutions to the Euler equa-
tions for initial vorticity in BΓ ∩Lp0 ∩Lp1 was proved by Misha Vishik,
where BΓ is a borderline Besov space parameterized by the function
Γ and 1 < p0 < 2 < p1. Vishik established short time existence and
uniqueness when Γ(n) = O(log n) and global existence and uniqueness

when Γ(n) = O(log
1
2 n). For initial vorticity in BΓ ∩ L2, we establish

the vanishing viscosity limit in L2(R2) of solutions of the Navier-Stokes
equations to a solution of the Euler equations in the plane, convergence
being uniform over short time when Γ(n) = O(log n) and uniform over
any finite time when Γ(n) = O(logκn), 0 ≤ κ < 1, and we give a
bound on the rate of convergence. This allows us to extend the class
of initial vorticities for which both global existence and uniqueness of
solutions to the Euler equations can be established to include BΓ ∩ L2

when Γ(n) = O(logκn) for 0 < κ < 1.

1. Introduction

We consider an incompressible fluid of constant density and nonzero viscosity
extending throughout the plane—described by the Navier-Stokes equations—
and ask whether its velocity as a function of time and space converges in
the energy norm to the velocity of an inviscid fluid—described by the Euler
equations—having the same initial velocity. This is the so-called vanishing
viscosity limit, which is of interest primarily in two settings: weak solutions
in the whole space (or a periodic domain) and solutions of any kind in a
bounded domain, these being the two settings where knowledge of the limit
is most wanting.

Here, we focus on a particular class of weak solutions in the plane. (Very
little is known about the vanishing viscosity limit for weak solutions in higher
dimensions.) This class of weak solutions arises in an issue closely related
to the vanishing viscosity limit, namely, uniqueness of solutions to the Euler
equations in a given class of weak solutions.

There are two results that reach the edge of what is known about unique-
ness of solutions to the Euler equations in the plane. In [10], Yudovich
established uniqueness (and existence) of solutions to the Euler equations
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with bounded initial vorticity, extending this result in [11] to a class of ini-
tial velocities with unbounded vorticities, which we will call Y, with the
restriction that the Lp-norms of the initial vorticity not grow much faster
than log p. (These results are for a bounded domain, but extend easily to
the whole plane.) In [9], Vishik established the uniqueness of solutions for
velocities whose vorticities lie in L∞([0, T ];BΓ ∩ Lp0), 1 < p0 < 2 (or, in n
dimensions, 1 < p0 < n) and where BΓ is defined in Section 2. This was
under the assumption that Γ(n) not grow much faster than n log n. Except
for certain technical restrictions placed on Γ, this class of solutions includes
those generated by initial vorticities in Y. Vishik, however, was only able to
establish existence of a solution in his uniqueness class for initial vorticities
in BΓ ∩ Lp0 ∩ Lp1 , 1 < p0 < 2 < p1 ≤ ∞ and Γ = O(log n) (for a more
detailed statement see Theorem 2.2).

We give a bound on the rate of convergence of the vanishing viscosity limit
in the L2-norm for initial vorticities in BΓ ∩ L2 with Γ = O(log n). We also
extend the class of initial vorticities for which both existence and uniqueness
can be established globally in time. (See Theorem 2.3, Corollary 2.4, and
Corollary 2.5.)

Related results appear in [1], where convergence in the energy norm uni-
formly over finite time is shown for bounded initial vorticity, and in [4] where
convergence in the same norm is shown for initial velocity in Y. In [3], con-
vergence for initial velocity in B1

∞,1 is shown uniformly over finite time in
the B0

∞,1-norm with a bound on the rate of convergence. The rates in these
references are discussed following Corollary 2.5, below.

2. Background and statement of main results

The Navier-Stokes equations are given by

(NS)

∂tũ+ ũ · ∇ũ− ν∆ũ = −∇p̃
div ũ = 0
ũ|t=0 = u0

and the Euler equations by

(E)

∂tu+ u · ∇u = −∇p
div u = 0
u|t=0 = u0.

Here, ũ, p̃, u, and p are tempered distributions.
In the plane, the vorticity of a fluid is given by

ω = ω(u) = ∂1u2 − ∂2u1.

We now define the Littlewood-Paley operators. We begin with the fol-
lowing lemma:

Lemma 2.1. There exist two radial functions χ ∈ S and ϕ ∈ S satisfying
the following properties:

(i) supp χ ⊂ {ξ ∈ R2 : 0 ≤ |ξ| ≤ 4
3},
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(ii) supp ϕ ⊂ {ξ ∈ R2 : 3
4 ≤ |ξ| ≤ 8

3},
(iii) χ(ξ) +

∑∞
j=0 ϕj(ξ) = 1,

where ϕj(ξ) = ϕ(2−jξ) (so ϕ̌j(x) = 2jnϕ̌(2jx)).

Proof. This is classical. See [7]. �

Observe that, if |j − j′| ≥ 2, then supp ϕj ∩ supp ϕj′ = ∅, and, if j ≥ 1,
then supp ϕj ∩ supp χ = ∅.

Let f ∈ S′. We define, for any integer j,

∆jf =

 0, j < −1,
χ(D)f = χ̌ ∗ f, j = −1,
ϕ(D)f = ϕ̌j ∗ f, j > −1,

and

Sjf =
j−1∑

k=−∞
∆kf = χ(2−jD)f.

As in [9], let Γ : R → [1,∞) be a locally Lipschitz continuous monoton-
ically nondecreasing function that satisfies conditions (i)-(iii) p. 771 of [9].
Condition (i) is that Γ = 1 on the interval (−∞,−1] and limβ→∞ Γ(β) = ∞.
For the other (minor technical) conditions see [9].

Define the space

BΓ = {f ∈ S ′(R2) :
N∑

j=−1

‖∆jf‖L∞ = O(Γ(N))}

with the norm

‖f‖Γ = sup
N≥−1

1
Γ(N)

N∑
j=−1

‖∆jf‖L∞ .

The following fundamental result for initial vorticities in BΓ is from The-
orems 7.1 and 8.1 of [9]:

Theorem 2.2 (Vishik). Define Γ1 : R → [1,∞) by

Γ1(β) =
{

1, β < −1,
(β + 2)Γ(β), β ≥ −1

and add the assumption (on Γ) that Γ1 is convex. Finally, assume that Γ
satisfies

(β + 2)Γ′(β) ≤ C (2.1)

for almost all β ∈ [−1,∞). Given initial vorticity ω0 in BΓ ∩Lp0 ∩Lp1 with
1 < p0 < 2 < p1 ≤ ∞ there exists a short-time solution to (E) unique in the
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class of vorticities lying in L∞([0, T ];Lp0 ∩Lp1)∩Cw∗([0, T ];BΓ1). With the
added assumption that

Γ′(β)Γ1(β) ≤ C (2.2)

for almost all β ≥ −1, there exists a solution to (E) unique in the class of
vorticities lying in L∞loc([0,∞);Lp0 ∩ Lp1) ∩ Cw∗([0,∞);BΓ1). Here, Cw∗ is
the space of weak∗-continuous functions (see [9] for details).

Observe that the vorticity degrades immediately in that (as far as is
known) it belongs to a larger space at all positive times than it does at
time zero.

Remark 2.1. In Theorem 2.3, Corollary 2.4, and Corollary 2.5 below, for
the case where limn→∞ Γ(n) = ∞, the symbol C represents an unspecified
absolute constant (that is, independent of the initial data). For the case
where Γ(n) is bounded in n, the constant C depends on both the L2-norm
and the B0

∞,1-norm of initial vorticity. This dependence arises in (4.1) below.

Theorem 2.3. Let Γ : R → [0,∞) (without making any of the assumptions
on Γ of [9]) and assume that u0 is in L2 with ω0 = ω(u0) in BΓ ∩L2. Then
there exists a unique solution ũ to (NS) and a (not necessarily unique)
solution u to (E), both lying in L∞([0,∞);H1(R2)). For any such u,

‖ũ− u‖L∞([0,T ];L2(R2)) ≤ C(νT )1/2‖ω0‖L2 exp
(
eCαTΓ(− log(νT )/2)

)
(2.3)

for all T > 0, where α = ‖ω0‖BΓ
.

Proof. The existence of a global-in-time solution to (E) with vorticity in
L∞([0,∞);Lp) for ω0 in Lp(R2), p > 1, is due to Yudovich in [10] (see,
for instance, Theorem 4.1 p. 126 of [5]). The existence and uniqueness of
solutions to (NS) lying in L∞([0, T ];L2) ∩L2([0, T ];L2) for u0 in L2(R2) is
classical (see, for instance, Theorems III.3.1 and III.3.2 of [6]). Because our
solutions to (NS) are in the whole plane, all Lp-norms of the vorticity are
non-increasing, so, in fact, ũ lies in L∞([0,∞);H1(R2)).

The proof of (2.3) is contained in the sections that follow. �

It is possible to loosen the finite energy requirement in Theorem 2.3 that
u0 lie in L2(R2), allowing it to lie, for instance, in the space Em of [2].

Without restrictions on Γ it is of course possible that the right-hand side of
(2.3) will not go to zero with ν. In order to establish the vanishing viscosity
limit, Γ(n) cannot grow any faster than C log n. We have the following
immediate corollary of Theorem 2.3:

Corollary 2.4. When Γ(n) = O(log n), ũ → u in L∞([0, T ];L2(R2)) for
T < (Cα)−1, with

‖ũ− u‖L∞([0,T ];L2(R2))

≤ C‖ω0‖L2(νT )1/2 exp

((
−1

2
log(νT )

)CαT
)
.

(2.4)
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In Corollary 2.5, we extend the class of solutions for which both existence
and uniqueness of solutions to (E) can be demonstrated globally in time.
Note that we obtain uniqueness in Corollary 2.5 in spite of lacking knowledge
of whether the solution to (E) remains in the class L∞([0, T ];BΓ1) for arbi-
trarily large T , this being (almost) the class for which Vishik demonstrates
uniqueness in [9] (see the comment on p. 771 of [9]).

Corollary 2.5. When Γ(n) = O(logκn) with 0 ≤ κ < 1, the solution u to
(E) is unique in L∞([0,∞);H1(R2)). Also, ũ → u in L∞loc([0,∞);L2(R2)),
and for all T > 0,

‖ũ− u‖L∞([0,T ];L2(R2)) ≤ C(νT )1/2‖ω0‖L2 exp
(
eCαT logκ(− log(νT )/2)

)
. (2.5)

Proof. The rate in (2.5) follows immediately from Theorem 2.3. By (2.5),
any solution u to (E) lying in L∞([0,∞);H1(R2)) is the strong limit in
L∞loc([0,∞);L2(R2)) of the solutions ũ to (NS); since strong limits are unique,
we conclude that the solution u is unique. �

In Corollary 2.5, one can show that a solution to (E) in L∞([0,∞);H1(R2))
is unique without using the vanishing viscosity limit. Indeed, given a solu-
tion u to (E) with initial data u0, we construct in the proof of Theorem 2.3
a sequence of C∞ solutions un to (E) with initial data Snu0. We then show
that ω0 ∈ BΓ implies ||un − u||L∞([0,T ];L2(R2)) goes to 0 as n approaches in-
finity (see (3.2) and (4.2) in the sections that follow), where Γ satisfies the
conditions in Corollary 2.5. Since the sequence un is uniquely determined
by the initial data u0, two solutions to (E) with the same initial data and
initial vorticity in BΓ will have the same approximating sequence and will
therefore be equal on [0, T ].

The restriction (2.1) on Γ ensures that Γ(N) grows no faster than C logN
for largeN . Therefore, Corollaries 2.4 and 2.5 establish a rate of convergence
for the entire short time existence and uniqueness class in [9]. Similarly, the
assumption (2.2) on Γ ensures that Γ(N) grows no faster than Clog

1
2N for

large N . Therefore, Corollary 2.5 establishes a rate of convergence for the
entire global existence and uniqueness class in [9] as well.

For bounded initial vorticity, Chemin shows in [1] that

‖ũ− u‖L∞([0,T ];L2(R2)) ≤(4νT )
1
2

exp(−C‖ω0‖L2∩L∞T )

× ‖ω0‖L2∩L∞e
1−exp(−C‖ω0‖L2∩L∞T ).

Since B0
∞,1 ⊆ L∞, we would expect this rate to be slower than that of

(2.5) with κ = 0, which it is. As T approaches 0, though, this rate gets
closer to being C(νT )1/2, so it is not much worse than (2.5) with κ = 0 for
small times. Chemin’s rate is substantially better than that of (2.4) and of
(2.5) with 0 < κ < 1; however, the two spaces BO(logκn) and L∞ are not
comparable for 0 < κ ≤ 1, since the vorticity can be unbounded for the first
space while Γ(n) = O(n) for the second.
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Hmidi and Keraani show in [3] that for ω0 in B0
∞,1,

‖ũ− u‖L∞([0,T ];B0
∞,1) ≤ c(νT )1/2(1 + νT )1/2ee

cT
,

where the constants depend on the B0
∞,1 norm of ω0. This is the same rate

(in a different space) as that in (2.5) with κ = 0, up to the dependence of
constants on time and on the initial data.

3. Basic vanishing viscosity argument

We now begin the proof of Theorem 2.3. Let

un = the solution to (E) with initial velocity u0
n,

where u0
n, n = 1, 2, . . . , is a divergence-free initial velocity smoothed to lie

in C∞ and such that u0
n → u0 in L2(R2) as n→∞.

Letting

X = L∞([0, T ];L2(R2))

we have, for any solution u to (E) in L∞([0,∞);H1(R2)),

‖ũ− u‖X ≤ ‖ũ− un‖X + ‖u− un‖X .

A straightforward energy argument (see [4] for instance) shows that

‖ũ(t)− un(t)‖2
L2 ≤Cνt‖ω0‖L2‖ω(u0

n)‖L2 + ‖u0 − u0
n‖2

L2

+ 2
∫ t

0

∫
R2

|ũ(s, x)− un(s, x)|2 |∇un(s, x)| dx ds.

As long as we insure that the initial velocity is smoothed in such a way that

‖ω(u0
n)‖L2 ≤ C‖ω0‖L2 (3.1)

we can conclude from Gronwall’s inequality that

‖ũ(t)− un(t)‖2
L2 ≤

(
Cνt‖ω0‖2

L2 + ‖u0 − u0
n‖2

L2

)
e2

R t
0 ‖∇un‖L∞

so

‖ũ− un‖X ≤
(
(CνT )1/2‖ω0‖L2 + ‖u0 − u0

n‖L2

)
e

R T
0 ‖∇un‖L∞ ,

using (A2 +B2)1/2 ≤ A+B for A,B ≥ 0.
The energy argument for bounding ‖u− un‖X is identical except that the

term involving ν is absent and of course we have u in place of ũ. (In this
energy argument, although the norm of u(t) in H1(R2) does not appear,
the membership of u(t) in H1(R2) for almost all t is required to insure the
vanishing of one of the two nonlinear terms, so we are using the membership
of u in L∞([0,∞);H1(R2)).)

We thus have

‖u− un‖X ≤ ‖u0 − u0
n‖L2e

R T
0 ‖∇un‖L∞ (3.2)
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and so

‖ũ− u‖X ≤ (CνT )1/2‖ω0‖L2e
R T
0 ‖∇un‖L∞

+ 2‖u0 − u0
n‖L2e

R T
0 ‖∇un‖L∞ .

(3.3)

Now suppose we can show that for some sequence (u0
n)∞n=1 of approxima-

tions to u0 satisfying (3.1),

‖u0 − u0
n‖L2e

R T
0 ‖∇un‖L∞ → 0 as ν → 0. (3.4)

Then letting n = f(ν) with f(ν) →∞ as ν → 0, the second term in (3.3) will
vanish with the viscosity. By choosing f to increase to infinity sufficiently
slowly, we can always make the first term in (3.3) vanish with the viscosity
as well. Thus, to establish the vanishing viscosity limit, we need only show
that (3.4) holds; to determine a bound on the rate of convergence, however,
we must choose the function f explicitly.

What we have done is in effect decouple the vanishing viscosity limit from
the Navier-Stokes equations and from the viscosity itself. Also, we have yet
to use the information we gain from ω0 lying in BΓ; this information is
encoded in the approximate solution un and will be exploited in the next
section.

4. Convergence in (3.4)

To smooth the initial velocity let

u0
n = Snu

0.

Then ω0
n = Snω

0 and (3.1) is satisfied. Also,

‖u0 − u0
n‖L2 = ‖(Id−Sn)u0‖L2 =

∥∥∥∥∥∥
∞∑

q=n+1

∆qu
0

∥∥∥∥∥∥
L2

≤
∞∑

q=n+1

‖∆qu
0‖L2

≤ C

∞∑
q=n+1

2−q‖∆q∇u0‖L2

≤ C

 ∞∑
q=n+1

2−2q

1/2 ∞∑
q=n+1

‖∆q∇u0‖2
L2

1/2

≤ C2−n

 ∞∑
q=n+1

‖∆qω
0‖2

L2

1/2

≤ C‖ω0‖L22−n,

where we used Minkowski’s inequality, Bernstein’s inequality, and the Cauchy-
Schwarz inequality. From Lemma 4.1, below,

‖∇un(t)‖L∞ ≤ C
(
‖ω0

n‖L2 + ‖ω0
n‖B0

∞,1

)
e
Ct‖ω0

n‖B0
∞,1

≤ C
(
‖ω0‖L2 + αΓ(n)

)
eCtαΓ(n) ≤ CαΓ(n)eCαtΓ(n),

(4.1)
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where α = ‖ω0‖BΓ
. When limn→∞ Γ(n) = ∞, (4.1) holds for an absolute

constant C for all sufficiently large n; it holds for all n for a constant that
depends upon the initial vorticity. (See Remark (2.1)). This applies as well
to the inequalities that follow. Also, in (4.1) we used

‖ω0
n‖B0

∞,1
=
∑

q≥−1

‖∆qω
0
n‖L∞ ≤

n+1∑
q=−1

‖∆qω
0‖L∞ ≤ αΓ(n).

Thus, ∫ T

0
‖∇un(t)‖L∞ ≤ CαΓ(n)

CαΓ(n)

(
eCαTΓ(n) − 1

)
≤ eCαTΓ(n)

and

‖u0 − u0
n‖L2e

R T
0 ‖∇un‖L∞ ≤ C‖ω0‖L22−n exp

(
eCαTΓ(n)

)
. (4.2)

To bound the rate of convergence of ũ to u, we must decide how to choose
n as a function of ν in (3.3). Using (4.2), we have

‖ũ− u‖X ≤ C‖ω0‖L2

(
(νT )1/2 + 2−n

)
exp

(
eCαTΓ(n)

)
.

Viewing this as a sum of two rates, when n = −(1/2) log(νT ) the two rates
are equal. If n increases more rapidly as ν → 0 then the first term de-
creases more slowly as ν → 0; if n increases more slowly as ν → 0 then
the second term decreases more slowly as ν → 0. Since the slower decreas-
ing of the two terms limits the convergence rate, we conclude that letting
n = −(1/2) log(νT ) optimizes the convergence rate, giving the bound in
Theorem 2.3 and completing its proof.

Lemma 4.1. Let v be a C∞-solution to (E) with initial velocity v0, where
ω0 is in Lp0 ∩B0

∞,1, with p0 in (1,∞). Then

‖∇v(t)‖L∞ ≤ C
(
‖ω0‖Lp0 + ‖ω0‖B0

∞,1

)
e
Ct‖ω0‖

B0
∞,1 .

Proof. We have,

‖∇v(t)‖L∞ ≤ ‖∆−1∇v(t)‖L∞ +
∑
q≥0

‖∆q∇v(t)‖L∞

≤ C ‖∆−1ω(t)‖Lp0 + C
∑
q≥0

‖∆qω(t)‖L∞

≤ C‖ω0‖Lp0 + C ‖ω(t)‖B0
∞,1

.

Here we used Bernstein’s inequality with the Calderon-Zygmund inequality
for the first term and Lemma 4.2 for the sum.

From Theorem 4.2 of [8],

‖ω(t)‖B0
∞,1

≤ C(1 + log(‖g(t)‖lip‖g−1(t)‖lip)‖ω0‖B0
∞,1

,
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where g is the flow associated to v; that is,

g(t, x) = x+
∫ t

0
v(s, g(s, x)) ds.

It follows from Gronwall’s inequality that

‖g(t)‖lip, ‖g−1(t)‖lip ≤ exp
∫ t

0
‖∇v(s)‖L∞ ds.

Combining the three inequalities above gives

‖∇v(t)‖L∞ ≤ C‖ω0‖Lp0 + C

(
1 + 2

∫ t

0
‖∇v(s)‖L∞ ds

)
‖ω0‖B0

∞,1
,

and the proof is completed by another application of Gronwall’s inequality.
�

In the proof of Lemma 4.1 we used the existence of a flow associated with
a smooth solution to (E), which allowed us to apply Theorem 4.2 of [8].
This is where our approach differs markedly from that of Vishik’s in [9],
where required properties of the flow are inferred from the membership of
the vorticity in the spaces Lp0 ∩BΓ and Lp0 ∩Lp1 and where the constraints
on the values of p0 and p1 of Theorem 2.2 are required. Vishik also requires
that p0 < 2 so that the velocity can be recovered uniquely from the vorticity
using the Biot-Savart law, since he uses the vorticity formulation of a weak
solution to (E) in [9]. By contrast, in Theorem 2.3 we in effect require that
p0 = p1 = 2, so that we can make the basic energy argument in Section 3.

It is also possible to prove Lemma 4.1 using an argument like that in [3].

Lemma 4.2. Let v be a divergence-free vector field in L2
loc(R2) with vorticity

ω. Then there exists an absolute constant C such that for all q ≥ 0 (that is,
avoiding the low frequencies),

‖∆q∇v‖L∞ ≤ C ‖∆qω‖L∞ .

Proof. Since v is a divergence-free vector field in L2
loc(R2) it possesses a

(unique) stream function ψ; that is, v = ∇⊥ψ = (−∂2ψ, ∂1ψ), and ω = ∆ψ.
Therefore ∆qv = ∇⊥∆qψ and ∆qψ = ∆−1∆qω, so ∇∆qv = ∇∇⊥∆−1∆qω.
It follows that

‖∆q∇v‖L∞ ≤ C sup
i,j

‖∆q∂i∂j∆−1ω‖L∞ .

But,

‖∆q∂i∂j∆−1ω‖L∞ = ‖F−1(ϕq(ξ)
ξiξj

|ξ|2
ω̂(ξ))‖L∞

= ‖F−1(ϕq(ξ)hq(ξ)ω̂(ξ))‖L∞ = ‖∆q(ȟq(ξ) ∗ ω)‖L∞ ,

where

hq(ξ) = χ(2−3−qξ)(1− χ(2−q+1ξ))
ξiξj

|ξ|2
,
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χ and ϕ being defined in Lemma 2.1. Observe that hq = 1 on the support
of ϕq. Because hq(ξ) = h(2−qξ), where

h(ξ) = χ(2−3ξ)(1− χ(2ξ))
ξiξj

|ξ|2
,

ȟq(x) = 22qȟ(2qx), and thus by a change of variables, ‖ȟq‖L1 = ‖ȟ‖L1 = C.
Then using Young’s convolution inequality,

‖∆q(ȟq(ξ) ∗ ω)‖L∞ = ‖ȟq(ξ) ∗∆qω‖L∞ ≤ ‖ȟq‖L1‖∆qω‖L∞

≤ C‖∆qω‖L∞ ,

which completes the proof. �
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