
NOTES
C.E TSOURAKAKIS

Abstract. Notes for the graph mining lecture.

1. Matrix Vector Multiplication

The goal of the corresponding slide is to present the two ways of thinking of matrix vector multiplication.

Consider matrix A ∈ Rmxn and a vector x ∈ Rn and the matrix vector multiplication Ax = b, b ∈ Rm.

• The coordinates of vector b are given by: bi =
∑n

j=1 aijxj for i = 1 . . .m. Thus, we view the matrix vector
multiplication as an operation that returns a vector b, whose coordinates are given by the inner products
of the rows of A with x.
• b = Ax = [a1| . . . |an]x = x1a1 + . . .+ xnan. Thus b is a linear combination of the columns of matrix A.

From now on, think A as linear map, i.e., taking as “inputs” vectors in Rn and returning “outputs” in Rm. The
map x 7−→ Ax is linear because A(x+ y) = Ax+Ay and A(αx) = αAx, where α ∈ R.

Consider now x = A−1b, where A−1 is the inverse of the square matrix A. Again there are two ways to see x:

• The obvious one: A−1b, apply A−1 to b.
• The i-th coordinate xi of the vector x is the coefficient of the i-th column of A so that this holds: x1a1 +
. . .+ xnan = b

The second view point is effectively a change of the basis. x is the vector of the coordinates of a different
representation of b, i.e., we just changed the basis from the standard one E = {e1, . . . , en} to the basis given by
the columns of A (why is it a basis?). This is very important. For example later, I will explain that seeing things
from this point of view, will allow us to say that effectively all real symmetric matrices are diagonal. And it is the
eigendecomposition that will give us the correct basis of representation.

2. Orthogonality

The point of the corresponding slide is that orthogonality implies independence. E.g., if you are given two non-
zero vectors {x1, x2} ∈ R2 such that xT

1 x2 = 0, you know immediately that these two vectors form a basis for R2.
Orthogonality is a fundamental concept in linear algebra, more in any standard textbook such as “Linear Algebra
and Application” by G. Strang.

1



NOTES C.E TSOURAKAKIS 2

3. Vector Norms

A norm is a function, i.e., it takes as “input” a vector in Rn and returns a real number. The most important
family of vector norms are the p-norms. The rest of the lecture will refer (at certain points) to the 2-norm.

2-norm ( x ∈ Rn )

(1) ||x||2 =

√√√√ n∑
i=1

|xi|2 =
√
xTx

4. Matrix Norms

Consider A ∈ Rmxn. Discriminate two types of matrix norms, the ones that are induced by vector norms and the
ones that are not. We will talk for the 2 induced norm and the Frobenius norm.

Observe that even if you permute randomly the elements of your matrix the Frobenious norm will remain un-
changed. The Frobenious norm captures the “average” stretch and the L2 norm captures the maximum stretch
1.

Just for illustration purposes, I ran the following command in my laptop norm demo([1 2;3 4]) after downloading
the code from this link http://www.caam.rice.edu/~caam453/norm_demo.m. You see in figure 1 the images of
the unit balls defined by the 2-norm, the 1-norm and the ∞-norm of R2 and their images under the matrix A:

A =
(

1 2
3 4

)

Just by looking the unit balls can you say how the 1− norm and the ∞- norm of a vector x are defined? See also
http://en.wikipedia.org/wiki/Lp_space.

5. SVD

Remember (again): we view matrix A ∈ Rmxn as an operator. Let’s see the geometry behind the Singular Value
Decomposition of A = UΣV T

• The singular values σ1 ≥ σ2 ≥ . . . ≥ σn are the lengths of the principal semiaxes of the hyperellipse.
• The left singular vectors ui’s give the direction of the axes.
• The right singular vectors vi’s give the points in Rn on the unit circle that are mapped on the hyperellipse

along the semiaxes.

Given this interpretation, find on your own the SVD of simple matrices 2x2 2, e.g., diagonal matrices with positive,
negative elements, the all 1s matrix etc.

One standard use of the SVD is to perform dimensionality reduction.

1stretch that some vector x undergoes when we apply A to it
2I remember this was one of the problems in the last year’s exam

http://www.caam.rice.edu/~caam453/norm_demo.m
http://en.wikipedia.org/wiki/Lp_space
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(a) 2-norm (b) 1-norm

(c) ∞-norm

Figure 1. Unit balls in R2 and their images under matrix A.

5.1. SVD and dimensionality reduction. Let’s assume in the following that the rank of A ∈ Rmxn is equal to
r. From the SVD of A it follows that: A =

∑r
j=1 σjujv

T
j . There is a subtle point here, that is another application

of SVD. The rank r equals to the number of non-zero singular values (why? 3 ) .

The following two theorems show the optimality of SVD with respect to the L2 and Frobenious norm as a
dimensionality reduction tool.

Theorem 1. For any 0 ≤ k < r define Ak =
∑k

j=1 σjujv
T
j . The following equations hold for any matrix B ∈ Rmxn

whose rank is k or less:

(2) ||A−Ak||2 ≤ ||A−B||2

(3) ||A−Ak||F ≤ ||A−B||F

A standard application of the SVD as a dimensionality reduction tool, is image compression. Since it is a nice
application and easy to implement in MATLAB let’s see it.

I = imread(’xilouris.jpg’);
red = double(I(:,:,1));
green = double(I(:,:,2));
blue = double(I(:,:,3));
figure

3The answer is because U and V are of full rank, and therefore rank(A)=rank(Σ)
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imshow(I);
title(’Original image’);
% compression using k rank approximation
k = [10 30 60];

for i = 1 : length(k)
% svd for the red
[u_r s_r v_r] = svds(red,k(i));
red_k = uint8(u_r * s_r * transpose(v_r));
% svd for the green
[u_g s_g v_g] = svds(green,k(i));
green_k = uint8(u_g * s_g * transpose(v_g));
% svd for the blue
[u_b s_b v_b] = svds(blue,k(i));
blue_k = uint8(u_b * s_b * transpose(v_b));
im(:,:,1) = red_k;
im(:,:,2) = green_k;
im(:,:,3) = blue_k;
figure
imshow(im)
mytitle = strcat(’Rank k=’,int2str(k(i)));
title(mytitle)

end

The result of running this simple script on the two images of figure 2 are shown in figures 3 and 4. Can you make
an estimate of the savings we get, given that the initial matrix is nxm and we make a k rank approximation?

Since computing the SVD is expensive, randomized algorithms exist that “exchange” some accuracy (hopefully
small) in favor of speed. Let’s try out the method suggested in the paper A randomized singular value decomposition
algorithm for image processing, by E. Drinea, P.Drineas, P. Huggins. You can see what we get for k = 90 in
figure 5.1. Can you really tell the difference? Therefore, the proposed method which relies on a simple sampling
procedure, gives a nice trade-off between losing accuracy and speedup.

5.2. HITS algorithm. Hyperlink-Induced Topic Search (HITS) was developed by J. Kleinberg and is an algo-
rithm to rank web pages given a query. The algorithm computes the hubs and the authorities in the graph. Hubs
are pages that point to the authority nodes, and at the same time the authorities are nodes that are pointed by
the hubs! “Hubs and authorities exhibit what could be called a mutually reinforcing relationship” (Authoritative
Sources in a Hyperlinked Environment, by J.Kleinberg). So the user wants to see the pages with the highest
authorities w.r.t to his query as the result of his search and the hubs are good pointers to what the user wants
to see. We associate therefore two numbers to each web page, let ai and hi be the authority and the hub weight
of the i-th node, the higher they are the better they are considered.

Call A the adjacency matrix of the graph, and let h,a be the vectors containing in the i-th coordinate the hub
weight and the authority of the i-th node. How do we compute them? The following equations hold: h = Aa and
a = AT h (why?). These two iterative rules converge under the realistic assumption of the existence of a non-zero
spectral gap, to the top right (a) and the top left (h) singular vectors of A 4. To see why, substituting, gives that
the convergence points satisfy: a = ATAa and h = AAT h. Power method.

4By top we mean corresponding to the largest singular value σ1
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Figure 2. Original Images

Figure 3. Result on first image after applying SVD for k=10,30 and 60.
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Figure 4. Result on second image after applying SVD for k=10, 30 and 60.

5.3. Triangle Counting. Problem: Given a graph simple, undirected graph G(V,E), count the number of tri-
angles. Fastest Method: O(n2.376) (matrix multiplication). Listing Methods: In practice for large graphs listing
methods are preferred. The easiest ones after the obvious O(n3), are the NodeIterator and the EdgeItera-
tor. Idea: consider each node (edge) and count the number of triangles that the node (edge) under consideration
participates in.

Running time O(nd2
max), which in dense graphs becomes O(n3).

Can we do anything better than this?

This is another application of the SVD, which works well under certain conditions that seem to hold frequently
for “real-world” networks.
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Figure 5. This figure plots the value of the eigenvalue vs. its rank for Gn, 1
2
.

To reduce the problem of counting triangles to an SVD decomposition we have to represent the graph as a matrix.
Three are the major matrix representation of a graph: the adjacency matrix, the Laplacian and the Normalized
Laplacian. The Laplacian and the its normalized (by the degrees) version 5 are the ones that “pop-out” all the
time due to their amazing properties (Spectral Graph Theory) but for the triangles, the adjacency matrix will do
the work and the reason is simple: if A is the adjacency matrix, then through Ak we can count easily paths of
length k (think why).

Theorem 2 (EigenTriangle). The total number of triangles in a graph is equal to the sum of cubes of its
adjacency matrix eigenvalues divided by 6, namely:

∆(G) =
1
6

n∑
i=1

λ3
i(4)

Theorem 3 (EigenTriangleLocal). The number of triangles ∆i that node i participates in, can be computed
from the cubes of the eigenvalues of the adjacency matrix

∆i =

∑
j λ3

ju
2
i,j

2
(5)

where ui,j is the j-th entry of the i-th eigenvector.

Let’s consider first the random graph Gn, 1
2

before going to the real world networks 6.

You can see the Eigenvalue-Rank plot in figure 5.

This figure suggests that if we consider just the first eigenvalue of the adjacency matrix, we can get a very good
approximation in the number of triangles. If we had a similar spectrum for ‘real-world” networks, then we could
apply the same idea there. So let’s see the same type of plot for a small7 “real world” network in figure 6.

5when the graph is not d-regular, else we are talking about the same thing. Why?

6Obviously, a good approximation is the expected number of triangles is
(n
3)
8

7So that we can easily plot the whole spectrum
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Figure 6. This figure plots the value of the eigenvalue vs. its rank for a network with ≈ 1,2K
nodes, 17K edges.

Figure 7. Local Triangle Reconstruction for three networks, Flickr, Pol Blogs and Reuters.

In figure 7 you see the quality of the estimate of triangles per node if you apply this idea to three real world
networks ( for the details, http://www.cs.cmu.edu/~ctsourak/tsourICDM08.pdf ) It is remarkable how many
networks exhibit this property 8.

I did not mention anything for SVD, but I was just talking for the eigenvalues of the adjacency matrix. However,
this is essentialy the SVD, since the graph is undirected and therefore A is symmetric. Therefore the absolute

8Why you would not apply this idea to a network that you know that is of the form AAT ?Can you think of any such networks?

http://www.cs.cmu.edu/~ctsourak/tsourICDM08.pdf
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values of the eigenvalues are the singular values and the signs can be retrieved by looking the left and singular
vectors (how?).

6. PageRank

PageRank (PR) is the algorithm reportedly used by Google. PR models the web as a directed graph and
assigns to each node in the graph a numerical score.

Few words first on random walks. Consider a particle that jumps from node to node, with this simple rule. Given
its current position, i.e., let’s say node i, it chooses uniformly at random one of the neighbors of i. Observe that
this simple rule for a given graph defines a Markov chain. Think of the nodes as the states of the Markov Chain.
The transition matrix is a nxn matrix where Pij = 1

outdeg(i) if i→ j exists, otherwise Pij = 0.

The PR is the limiting distribution of the iterative process x(t+1)
j =

∑
i Pijx

(t)
j =

∑
i→j

x
(t)
i

outdeg(i) .

Observe that in a directed graph we can have dangling nodes. If during the random walk we get there then we
are “stack”. So what can we do about it?

Consider an indicator vector δ that has its i-th coordinate equal to 1 if and only if the i-th node is dangling.
Now consider matrix P ′ = P + δ ∗ vT where v is some probability distribution vector over the nodes, called the
teleportation distribution. Think: Which property does P ′ have that P does not?9 One can choose the v vector to
assign uniform teleportation, but non-uniform v leads to Personalized PR! The next step is to make the Markov
Chain irreducible, i.e., every node can be reachable from any other node. In other words, we want to make the
graph strongly connected.

The reason to do so, is to satisfy the conditions of the Perron-Frobenious theorem http://en.wikipedia.org/
wiki/PerronFrobenius_theorem. Therefore we consider the transition matrix P

′′
= cP ′ + (1 − c)(1, . . . , 1)vT

where c is the teleportation coefficient (typical value c=0.85). So now we see what is PR. It is the power method,
namely:

(6) x(t+1) = (P ′′)Tx(t)

where now we know that P ′′ is row stochastic and and irreducible. The convergence point of the iterative procedure
is the principal eigenvector x

(7) x = (P ′′)Tx

Now, as an exercise consider a connected undirected graph G(V,E). Why don’t we need to form P ′, P ′′ 10? Show
that the PR is given effectively by the degrees of the nodes.

7. Graph Patterns

One of the tasks of graph mining is the detection of patterns in “real-world” graphs. These patterns are important
for many reasons, such as link prediction, abnormal node detection but you can think of more. Knowing patterns
provides us a way to make predictions and also say what is normal or not with respect to those patterns.

The power laws I have in the beamer slides are:

9P ′ is row-stochastic whereas P had some rows with sum equal to 0.
10Remember why we created each one

http://en.wikipedia.org/wiki/Perron�Frobenius_theorem
http://en.wikipedia.org/wiki/Perron�Frobenius_theorem
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• Degree distribution
• Spectrum, main focus Top Eigenvalues
• Hop plot and the celebrated Small World Phenomenon
• Time evolving graphs
• Triangles

The other set of slides (the powerpoint files) contain more power laws, including the ones in the beamer. Few
words on the densification law, the small world phenomenon, communities and Kronecker graphs.

Densification. Consider a given network. Think about it as in the following: initially it was the empty graph and
through time it became as it is now. How did this happen however? How did the network evolve? Therefore
it is interesting to experiment with graphs for which we have different snapshots and find patterns of evolution.
Leskovec, Kleinberg and Faloutsos did this and found out -among other things- the densification power law which
you see in figure 7. Jure’s whole thesis is on Dynamics of real world networks http://www.cs.cmu.edu/~jure/
pubs/thesis/jure-thesis.pdf.

Small World Phenomenon. This is one of the most surprising patterns in real-world networks. The first ex-
periment was conducted by Milgram and even if the way that it was conducted has been criticized, see http:
//en.wikipedia.org/wiki/Small_world_phenomenon and http://en.wikipedia.org/wiki/Six_degrees_of_
separation, it was pioneering work. The term “six-degrees” of separation has been used to describe the fact that
our world is small, in the sense that it takes few “hops” for any person to reach any other person. Modeling
the world as a graph, this means that the diameter, i.e., the longest of the shortest paths between two nodes is
surprisingly small.

Some reading material:

• Kleinberg’s web page under the section Small-World Phenomena and Decentralized Search.

http://www.cs.cmu.edu/~jure/pubs/thesis/jure-thesis.pdf
http://www.cs.cmu.edu/~jure/pubs/thesis/jure-thesis.pdf
http://en.wikipedia.org/wiki/Small_world_phenomenon
http://en.wikipedia.org/wiki/Small_world_phenomenon
http://en.wikipedia.org/wiki/Six_degrees_of_separation
http://en.wikipedia.org/wiki/Six_degrees_of_separation
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Figure 8. Figure from the Leskovec et al. paper. Caricature of how a real world network looks
like. ( courtesy of J. Leskovec).

• “Planetary-Scale Views on a Large Instant-Messaging Network ” by J. Leskovec, E. Horvitz

FYI: A whole book (probably more than one) is devoted to this phenomenon, “Six Degrees: The Science of a
Connected Age” by D.Watts.

Communities. A lot of research in graph mining is focused on finding the communities in real world networks.
A recent paper Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-
Defined Clusters by J. Leskovec, Lang, Dasgupta, Mahoney ( http://arxiv.org/abs/0810.1355 ) presents
surprising, counter-intuitive facts about communities. Among them, real world networks have a big core which
looks “random”, in other words this core cannot be partitioned in nice clusters, and then attached to its peripherym
there are clusters that experimentally have a small size. A caricature of this fact is shown in figure 8.

Kronecker graphs. The following properties hold for deterministic Kronecker graphs:

• Power-law-tail in- and out-degrees
• Power-law-tail scree plots
• constant diameter
• perfect Densification Power Law
• communities-within-communities

Note that stochastic Kronecker graphs introduced by Leskovec and Faloutsos produce more realistic graphs, by a
biased toin cossing procedure after doing the Kronecker multiplication.

Read Kronecker Graphs: an approach to modeling networks by Jure Leskovec, Deepayan Chakrabarti, Jon
Kleinberg, Christos Faloutsos, Zoubin Gharamani for all the details and much more http://arxiv.org/
abs/0812.4905.

http://arxiv.org/abs/0810.1355
http://arxiv.org/abs/0812.4905
http://arxiv.org/abs/0812.4905
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Figure 9. Deterministic Kronecker Graphs
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