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1 Prerequisites
Matrix-Vector Multiplication
Orthogonality
Vector and Matrix Norms

2 More on Singular Value Decomposition
Image Compression
Counting Triangles

3 Graph Patterns and Kronecker Graphs
4 From Christos powerpoint slides:

HITS
Pagerank
Epidemic Threshold
More power laws
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Matrix Vector Multiplication

Matrix A ∈ Rmxn

Vector x ∈ Rn

Ax = b, b ∈ Rm

bi =
∑n

j=1 aijxj for i = 1 . . .m.

b = Ax = [ ~a1| . . . | ~an]x = x1 ~a1 + . . .+ xn ~an.

A linear map, i.e.,
“Input” in Rn

“Output” in Rm

Why is A a linear map?
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Orthogonality

Definition (Orthogonal Vectors)

Two vectors v1 and v2 are orthogonal if their inner product is 0.

Definition (Linear Independence)

A set of vectors V = {v1, . . . , vn}, vi ∈ Rm, is said to be linearly
independent if the equation α1v1 + . . .+ αnvn = 0, αi ∈ R holds
if and only if αi = 0, i = 1 . . . n.

Theorem
Two orthogonal vectors are independent.
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Vector Norms

A norm is a function ||.|| : Rn → R with the following three
properties:

||x || ≥ 0 and ||x || =0 if x = 0.
||x + y || ≤ ||x ||+ ||y ||
||αx || = |α| ||x ||

2-norm ( x ∈ Rn )

||x ||2 =

√√√√ n∑
i=1

|xi |2 =
√

xT x (1)
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Matrix Norms

A ∈ Rmxn.

Definition (Frobenious norm)

||A||F =

√√√√ m∑
i=1

n∑
j=1

|xij |2 (2)

The 2-norm induces a matrix norm:

Definition (2-norm)

||A||2 = supx∈Rn,||x ||=1 ||Ax || (3)

Think! What do they express?
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SVD geometric intuition

Remember: we view matrix A ∈ Rmxn as an operator!

The unit circle (sphere) is mapped in an ellipse (hyperellipse).
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SVD geometric intuition

Display in this figure u1,u2, v1, v2, σ1, σ2.

Play yourselves with command eigshow in MATLAB!
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SVD and dimensionality reduction

Assume rank(A)=r , A ∈ Rmxn, thus A =
∑r

j=1 σjujvT
j .

The following two theorems show the optimality of SVD with
respect to the L2 and Frobenious norm as a dimensionality
reduction tool.

Theorem

For any 0 ≤ k < r define Ak =
∑k

j=1 σjujvT
j . The following

equations hold for any matrix B ∈ Rmxn whose rank is k or less:

||A− Ak ||2 ≤ ||A− B||2 (4)

||A− Ak ||F ≤ ||A− B||F (5)
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Image Compression: Original Images
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Image Compression: Results from the first image

Figure: Result on first image after applying SVD for k=10,30 and 60.
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Image Compression: Results from second image

Figure: Result on second image after applying SVD for k=10, 30 and
60.
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Randomized SVD

Computing the SVD of a matrix is expensive! Lose little
accuracy for speedup. READINGS:

Fast Monte Carlo Algorithms for Finding Low Rank
Approximations by Alan Frieze, Ravi Kannan, Santosh
Vempala.
Fast Monte Carlo Algorithms for Matrices II: Computing a
Low Rank Approximation to a Matrix by P. Drineas, R.
Kannan, and M.W. Mahoney.
Improved Approximation Algorithms for Large Matrices via
Random Projections, T. Sarlós.
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Randomized SVD for image compression
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Triangle Counting

Theorem (EIGENTRIANGLE)

The total number of triangles in a graph is equal to the sum of
cubes of its adjacency matrix eigenvalues divided by 6, namely:

∆(G) =
1
6

n∑
i=1

λ3
i (6)
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Theorem (EIGENTRIANGLELOCAL)

The number of triangles ∆i that node i participates in, can be
computed from the cubes of the eigenvalues of the adjacency
matrix

∆i =

∑
j λ

3
j u2

i,j

2
(7)

where ui,j is the j-th entry of the i-th eigenvector.
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Triangle Counting

Spectrum of random graph Gn, 1
2

:
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Triangle Counting

Therefore it suffices to consider the first eigenvalue of the
adjacency matrix of Gn, 1

2
to get a good estimate of the number

of triangles. What about real world networks?

Figure: This figure plots the value of the eigenvalue vs. its rank for a
network with ≈ 1,2K nodes, 17K edges.
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Triangle Counting

Figure: Local Triangle Reconstruction using a 10-rank approximation
for the Political Blogs network
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Triangle Counting

Figure: Local Triangle Reconstruction for three networks, Flickr, Pol
Blogs and Reuters.
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Triangle Counting

Figure: Scatterplots of the results for 158 networks. Speedup vs.
Eigenvalues: The mean required approximation rank for 95%
accuracy is 6.2.Speedups are between 33.7x and 1159x, with mean
250.
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Triangle Counting

Figure: Speedup vs. Edges: Notice the trend of increasing speedup
as the network size grows
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Degree Distribution

Figure: Outdegree Plot from the Faloutsos,Faloutsos,Faloutsos
paper. Observe that the plot is linear in log-log scale. The least
squares fitting gives that: freq = degree−2.15
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Top-Eigenvalues

Figure: Top Eigenvalue Plot from the Faloutsos,Faloutsos,Faloutsos
paper
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Spectrum: Eigenvalue vs. Rank

Figure: This figure plots the value of the eigenvalue vs. its rank for a
network with ≈ 1,2K nodes, 17K edges.
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Hop-plot power law

Figure: Hop Plot from the Faloutsos,Faloutsos,Faloutsos paper.
Pairs of nodes as a function of hops N(h) = hH The least squares
fitting gives that the exponent is H = 4.86.
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Triangle power laws: Participation Law

Figure: Triangle Participation Law for three networks HEP-TH, Flickr
and Epinions. Observe the emerging power law or the power law tail.
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Triangle power laws: Degree Triangle Power Law

Figure: Degree Triangle Power Law for three networks Reuters, Flickr
and Epinions.
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Communities

Figure: Figure from the Leskovec et al. paper. Caricature of how a
real world network looks like. (courtesy of J. Leskovec).
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Densification Law

E(t) ∝ N(t)α, α = 1.69.
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Shrinking Diameter

.... and the shrinking diameter phenomenon.

Figure: Shrinking diameter phenomenon for the Arxiv citation graph.

For more, read the paper!
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Kronecker Graphs in a picture

Figure: Deterministic Kronecker Graphs
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Kronecker Graphs properties

The following properties hold for deterministic Kronecker
graphs:

Power-law-tail in- and out-degrees
Power-law-tail scree plots
constant diameter
perfect Densification Power Law
communities-within-communities
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Chazelle’s Talk, 3:15 pm Wean Hall 7500. SCS Distinguished
Lecture
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