Generating Functions

October 22, 2016
Cody Johnson
ctj@math.cmu.edu

1 Introduction

The generating function of a sequence $a_{0}, a_{1}, a_{2}, \ldots$ is defined as

$$
G(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots=\sum_{k \geq 0} a_{k} x^{k}
$$

The generating function of a set S is defined as

$$
G(x)=\sum_{r \in S} x^{r}
$$

If we allow sets to have repeats - a multiset is a set that allows repeats - then we must count the number of times each element occurs as the coefficient:

$$
G(x)=\sum_{r \in S}(\# \text { occurrences of } r) \cdot x^{r}
$$

Let $\left[x^{k}\right] G(x)$ denote the coefficient of x^{k} in $G(x)$. Generating functions are useful because they allow us to work with sets algebraically. We can manipulate generating functions without worrying about convergence (unless of course you're evaluating it at a point).

2 Useful Facts

1. (Generating function of $\mathbb{N})$ For $|x|<1$,

$$
\frac{1}{1-x}=\sum_{n \geq 0} x^{n}=\prod_{n \geq 0}\left(1+x^{2^{n}}\right)
$$

2. (Generalized Binomial Theorem) For any $\alpha \in \mathbb{R}$, let

$$
\binom{\alpha}{k}:=\frac{\alpha(\alpha-1) \ldots(\alpha-k+1)}{k!}
$$

Then

$$
(1+x)^{\alpha}=\sum_{n \geq 0}\binom{\alpha}{n} x^{n}
$$

3. For two sequences of the same length a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n},

$$
\left(\sum_{k=1}^{n} a_{k}\right)\left(\sum_{k=1}^{n} b_{k}\right)=\sum_{k=1}^{2 n} \sum_{i+j=k} a_{i} b_{j}
$$

Also,

$$
\left(\sum_{k=1}^{n} a_{i}\right)^{2}=\sum_{k=1}^{n} a_{i}^{2}+2 \sum_{1 \leq i<j \leq n} a_{i} a_{j}
$$

4. The Maclaurin series of f is equal to

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}
$$

This is a way of forcibly extracting coefficients if necessary/possible.

3 Problems

1. (Logan Dymond) If x_{k}, y_{k} are integers such that $0 \leq x_{k}, y_{k} \leq k$ for all k, prove that for all $n>2$, the number of solutions to

$$
x_{1}+2 x_{2}+3 x_{3}+\cdots+n x_{n}=n(n+1)
$$

is equal to the number of solutions to

$$
0<3 y_{1}+4 y_{2}+5 y_{3}+\cdots+n y_{n-2} \leq n(n+1)
$$

2. (PFTB) Suppose that the set of natural numbers (including 0) is partitioned into a finite number of infinite arithmetic progressions of ratios $r_{1}, r_{2}, \ldots, r_{n}$ and first term $a_{1}, a_{2}, \ldots, a_{n}$. Then the following relation is satisfied:

$$
\frac{1}{r_{1}}+\frac{1}{r_{2}}+\cdots+\frac{1}{r_{n}}=1
$$

3. (USAMO 1996, weakened) Determine (with proof) whether there is a subset X of the nonnegative integers with the following property: for any integer n there is exactly one solution of $a+2 b=n$ with $a, b \in X$.
4. (USAMO 1996) Determine (with proof) whether there is a subset X of the integers with the following property: for any integer n there is exactly one solution of $a+2 b=n$ with $a, b \in X$.
5. (IMOSL 1998) Let a_{0}, a_{1}, \ldots be an increasing sequence of nonnegative integers such that every nonnegative integer can be expressed uniquely in the form $a_{i}+2 a_{j}+4 a_{k}$, where i, j, k are not necessarily distinct. Determine a_{1998}.
6. (Putnam 2003) For a set S of nonnegative integers, let $r_{S}(n)$ denote the number of ordered pairs $\left(s_{1}, s_{2}\right)$ such that $s_{1}, s_{2} \in S, s_{1} \neq s_{2}$, and $s_{1}+s_{2}=n$. Is it possible to partition the nonnegative integers into two sets A and B in such a way that $r_{A}(n)=r_{B}(n)$ for all n ?
7. (Putnam 2000) Let S_{0} be a finite set of positive integers. We define finite sets S_{1}, S_{2}, \ldots of positive integers as follows: the integer a is in S_{n+1} if and only if exactly one of $a-1$ or a is in S_{n}. Show that there are infinitely many integers N for which $S_{N}=S_{0} \cup\left\{N+a: a \in S_{0}\right\}$.
8. (China 2002) Find all natural numbers $n \geq 2$ such that there exists real numbers a_{1}, \ldots, a_{n} that satisfy

$$
\left\{\left|a_{i}-a_{j}\right| \mid 1 \leq i<j \leq n\right\}=\{1,2, \ldots, n(n-1) / 2\}
$$

9. (IMC 2015) Consider all 26^{26} words of length 26 in the Latin alphabet. Define the weight of the word as $\frac{1}{k+1}$, where k is the number of letters not used in this word. Prove that the sum of the weights of all words is 3^{75}.
10. (Putnam 2005) Let S_{n} denote the set of all permutations of the numbers $1,2, \ldots, n$. For $\pi \in S_{n}$, let $\sigma(\pi)=1$ if π is an even permutation and $\sigma(\pi)=-1$ if π is an odd permutation. Also, let $\nu(\pi)$ denote the number of fixed points of π. Show that

$$
\sum_{\pi \in S_{n}} \frac{\sigma(\pi)}{\nu(\pi)+1}=(-1)^{n+1} \frac{n}{n+1}
$$

11. (IMC 2016) Let S_{n} denote the set of permutations of the sequence $(1,2, \ldots, n)$. For every permutation $\pi=$ $\left(\pi_{1}, \ldots, \pi_{n}\right)$, let $\operatorname{inv}(\pi)$ be the number of pairs $1 \leq i<j \leq n$ with $\pi_{i}>\pi_{j}$; i.e., the number of inversions in π. Denote by $f(n)$ the number of permutations $\pi \in S_{n}$ for which $\operatorname{inv}(\pi)$ is divisible by $n+1$.
Prove that there exist infinitely many primes p such that $f(p-1)>\frac{(p-1)!}{p}$, and infinitely many primes p such that $f(p-1)<\frac{(p-1)!}{p}$.

4 Solutions

1. (Logan Dymond) If x_{k}, y_{k} are integers such that $0 \leq x_{k}, y_{k} \leq k$ for all k, prove that for all $n>2$, the number of solutions to

$$
x_{1}+2 x_{2}+3 x_{3}+\cdots+n x_{n}=n(n+1)
$$

is equal to the number of solutions to

$$
0<3 y_{1}+4 y_{2}+5 y_{3}+\cdots+n y_{n-2} \leq n(n+1)
$$

Solution: We want the $x^{n(n+1)}$ coefficient of

$$
\prod_{i=1}^{n} \sum_{j=0}^{i} x^{i j}=\prod_{i=1}^{n} \frac{x^{i(i+1)}-1}{x^{i}-1}
$$

to be equal to the $x^{n(n+1)}$ coefficient of

$$
\left(1+x+x^{2}+\dot{+} x^{n^{2}+n-1}\right) \prod_{i=1}^{n-2} \sum_{j=0}^{i} x^{(i+2) j}=\frac{x^{n(n+1)}-1}{x-1} \prod_{i=1}^{n-2} \frac{x^{(i+1)(i+2)}-1}{x^{i+2}-1}=\prod_{i=1}^{n} \frac{x^{i(i+1)}-1}{x^{i}-1}
$$

2. (PFTB) Suppose that the set of natural numbers (including 0) is partitioned into a finite number of infinite arithmetic progressions of ratios $r_{1}, r_{2}, \ldots, r_{n}$ and first term $a_{1}, a_{2}, \ldots, a_{n}$. Then the following relation is satisfied:

$$
\frac{1}{r_{1}}+\frac{1}{r_{2}}+\cdots+\frac{1}{r_{n}}=1
$$

Solution: We have

$$
\frac{1}{1-x}=\sum_{k \geq 0} x^{k}=\sum_{k=1}^{n} \sum_{i \geq 0} x^{a_{k}+i r_{k}}=\sum_{k=1}^{n} \frac{x^{a_{k}}}{1-x^{r_{k}}}
$$

or

$$
1=\sum_{k=1}^{n} x^{a_{k}} \cdot \frac{1-x}{1-x^{r_{k}}}
$$

$\lim _{x \rightarrow 1^{-1}} \frac{1-x}{1-x^{r} k}=\frac{1}{r_{k}}$ concludes the proof.
Note: Be cautious when plugging in values of x (or taking limits)! Here it is a finite series so it's okay.
3. (USAMO 1996, weakened) Determine (with proof) whether there is a subset X of the nonnegative integers with the following property: for any integer n there is exactly one solution of $a+2 b=n$ with $a, b \in X$.
Solution: Let $f(x):=\sum_{s \in X} x^{s}$. Then

$$
\sum_{n \geq 0} x^{n}=\sum_{a, b \in X} x^{a+2 b}=\sum_{a \in X} x^{a} \sum_{b \in X} x^{2 b}=f(x) f\left(x^{2}\right)
$$

Now remember the identity $\sum_{n \geq 0} x^{n}=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right) \ldots$ It suggests we can take $f(x)=$ $(1+x)\left(1+x^{4}\right)\left(1+x^{16}\right) \ldots$. It remains to show that $\left[x^{k}\right] f \in\{0,1\}$ for all k, which is clear.
Note: From generating functions, we can derive a combinatorial solution! If we expand $f(x)=(1+x)(1+$ $\left.x^{4}\right)\left(1+x^{16}\right) \cdots=1+x+x^{4}+x^{5}+x^{16}+\ldots$, note that each x^{k} must be the sum of distinct powers of 4 , i.e., X is the set of all numbers whose base 4 representations have just 0 s and 1 s as digits. Can you prove combinatorially that this set works?
4. (USAMO 1996) Determine (with proof) whether there is a subset X of the integers with the following property: for any integer n there is exactly one solution of $a+2 b=n$ with $a, b \in X$.
 Then

$$
f(x) f\left(x^{2}\right)=\frac{(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{16}\right) \ldots\left(1+x^{2^{k+1}}\right)}{x^{m}}
$$

for some big m. We don't actually have to calculate the value of m; just note that this expands into something of the form

$$
f(x) f\left(x^{2}\right)=x^{-a}+x^{-a+1}+\cdots+x^{b-1}+x^{b}
$$

and we can make a and b arbitrarily large by taking k large enough. Thus we can capture all integers.
Note: There is a combinatorial construction of X using base -4 expansion!
5. (IMOSL 1998) Let a_{0}, a_{1}, \ldots be an increasing sequence of nonnegative integers such that every nonnegative integer can be expressed uniquely in the form $a_{i}+2 a_{j}+4 a_{k}$, where i, j, k are not necessarily distinct. Determine a_{1998}.
Solution: Let $S:=\left\{a_{0}, a_{1}, \ldots\right\}$ and $f(x):=\sum_{s \in S} x^{s}$. Then

$$
\prod_{n \geq 0}\left(1+x^{2^{n}}\right)=\frac{1}{1-x}=\sum_{a, b, c \in S} x^{a+2 b+4 c}=f(x) f\left(x^{2}\right) f\left(x^{4}\right)
$$

Take $f(x)=(1+x)\left(1+x^{8}\right)\left(1+x^{64}\right) \ldots$ This is the numbers whose base 8 representations have just 0s and 1 s .
6. (Putnam 2003) For a set S of nonnegative integers, let $r_{S}(n)$ denote the number of ordered pairs $\left(s_{1}, s_{2}\right)$ such that $s_{1}, s_{2} \in S, s_{1} \neq s_{2}$, and $s_{1}+s_{2}=n$. Is it possible to partition the nonnegative integers into two sets A and B in such a way that $r_{A}(n)=r_{B}(n)$ for all n ?
Solution: Let $f(x):=\sum_{a \in A} x^{a}$ and $g(x):=\sum_{b \in B} x^{b}$. We want

$$
\begin{gathered}
f(x)+g(x)=\sum_{n \geq 0} x^{n}=\frac{1}{1-x}, \text { and } \\
\sum_{a_{1}, a_{2} \in A} x^{a_{1}+a_{2}}-\sum_{a \in A} x^{2 a}=\sum_{b_{1}, b_{2} \in B} x^{b_{1}+b_{2}}-\sum_{b \in B} x^{2 b}
\end{gathered}
$$

so

$$
\begin{aligned}
f(x)^{2}-f\left(x^{2}\right) & =g(x)^{2}-g\left(x^{2}\right)=\left(\frac{1}{1-x}-f(x)\right)^{2}-\left(\frac{1}{1-x^{2}}-f\left(x^{2}\right)\right) \\
& =f(x)^{2}+f\left(x^{2}\right)-\frac{2 f(x)}{1-x}+\frac{1}{(1-x)^{2}}-\frac{1}{1-x^{2}} \Longrightarrow \\
\frac{x}{1-x^{2}} & =f(x)-(1-x) f\left(x^{2}\right)=\sum_{a \in A}\left(x^{a}+x^{2 a+1}-x^{2 a}\right)
\end{aligned}
$$

Expand $\frac{x}{1-x^{2}}=x+x^{3}+x^{5}+\ldots$, so the right-hand side cannot have any even powers. Hence, $2 a \in A \Longrightarrow a \in A$. Also we want the odd coefficients to be exactly 1 , so $2 a+1 \in A \Longrightarrow a \notin A$. Also since every integer must be in at least one set, we must have $a \in A \Longrightarrow 2 a \in A$ and $a \in A \Longrightarrow 2 a+1 \in B$.
To finish, we make our construction in the following way: put $0 \in A$, and let the above two rules place the rest of the integers. It's easy to check that it places each integer in exactly one set.
Note: The combinatorial construction for A is the set of numbers with an even number of 1 s in its binary representation, and B is odd number of 1 s .
7. (Putnam 2000) Let S_{0} be a finite set of positive integers. We define finite sets S_{1}, S_{2}, \ldots of positive integers as follows: the integer a is in S_{n+1} if and only if exactly one of $a-1$ or a is in S_{n}. Show that there are infinitely many integers N for which $S_{N}=S_{0} \cup\left\{N+a: a \in S_{0}\right\}$.
Solution: Let $f_{n}(x):=\sum_{s \in S_{n}} x^{s}$. Then, we have $f_{n+1}(x)=(1+x) \sum_{s \in S} x^{s}(\bmod 2)$, so $f_{N} \equiv(1+x)^{N} f_{0}(x)$ $(\bmod 2)$. We want it in the form of $f(x) \equiv\left(1+x^{N}\right) f_{0}(x)(\bmod 2)$. However, if N is a power of 2 , then $(1+x)^{N} \equiv 1+x^{N}(\bmod 2)$ (this is seen from Pascal's triangle), so all $N=2^{k}$ work as long as $N>\max \left\{S_{0}\right\}$ (to avoid internal cancellation).
8. (China 2002) Find all natural numbers $n \geq 2$ such that there exists real numbers a_{1}, \ldots, a_{n} that satisfy

$$
\left\{\left|a_{i}-a_{j}\right| \mid 1 \leq i<j \leq n\right\}=\{1,2, \ldots, n(n-1) / 2\}
$$

Solution: Let $S=\left\{a_{1}, \ldots, a_{n}\right\}$ and $f(x)=\sum_{s \in S} x^{s}$. Then

$$
\begin{aligned}
f(x) f(1 / x) & =\left(x^{a_{1}}+\cdots+x^{a_{n}}\right)\left(x^{-a_{1}}+\cdots+x^{-a_{n}}\right) \\
& =n-1+x^{-n(n-1) / 2}+\cdots+x^{n(n-1) / 2} \\
& =n-1+\frac{x^{n(n-1) / 2+1}-x^{-n(n-1) / 2}}{x-1} \\
& =n-1+\frac{x^{\left(n^{2}-n+1\right) / 2}-x^{-\left(n^{2}-n+1\right) / 2}}{x^{1 / 2}-x^{-1 / 2}}
\end{aligned}
$$

Take $x=\exp \frac{3 \pi i}{n^{2}-n+1}=: \exp 2 i \theta$ to get

$$
|f(x)|^{2}=f(x) f(\bar{x})=n-1+\frac{\sin \frac{3 \pi}{2}}{\sin \theta}=n-1-\frac{1}{\sin \theta}<n-1-\frac{1}{\theta}=n-1-\frac{2}{3 \pi}\left(n^{2}-n+1\right)
$$

This quantity is negative for all n except $n=2,3,4$. Then take the following constructions: $\{0,1\},\{0,1,3\}$, and $\{0,1,4,6\}$.
9. (IMC 2015) Consider all 26^{26} words of length 26 in the Latin alphabet. Define the weight of the word as $\frac{1}{k+1}$, where k is the number of letters not used in this word. Prove that the sum of the weights of all words is 3^{75}.
Solution: Let $a_{n i}$ be the number of n-letter words with $26-i$ distinct letters, and let $f_{n}(x):=\sum_{i} a_{n i} x^{i}$. Since $a_{n i}=(26-i) a_{(n-1) i}+(i+1) a_{(n-1)(i+1)}$, we have

$$
f_{n}(x)=f_{n-1}^{\prime}(x)(1-x)+26 f_{n-1}(x)
$$

Now let $I_{n}:=\int_{0}^{1} f_{n}(x) d x$. Integrating by parts, we get

$$
I_{n}=\left[f_{n-1}(x)(1-x)\right]_{0}^{1}+27 I_{n-1}=-f_{n-1}(0)+27 I_{n-1}=27 I_{n-1}
$$

since $f_{n-1}(0)=a_{(n-1) 0}=0$. Since $I_{1}=1$, we get $I_{26}=27^{25}=3^{75}$.
Note: The weight function $\frac{1}{k+1}$ motivated this solution, since it looks like $\int_{0}^{1} x^{k} d x$.
10. (Putnam 2005) Let S_{n} denote the set of all permutations of the numbers $1,2, \ldots, n$. For $\pi \in S_{n}$, let $\sigma(\pi)=1$ if π is an even permutation and $\sigma(\pi)=-1$ if π is an odd permutation. Also, let $\nu(\pi)$ denote the number of fixed points of π. Show that

$$
\sum_{\pi \in S_{n}} \frac{\sigma(\pi)}{\nu(\pi)+1}=(-1)^{n+1} \frac{n}{n+1}
$$

Solution: Let $f_{n}(x):=\sum_{\pi \in S_{n}} \sigma(\pi) x^{\nu(\pi)}$. Then we can either have $\pi(n+1)$ or $n+1$ gets sent somewhere in a cycle. The number of cycles of length ℓ for which $n+1$ can get sent to is $\frac{n!}{(n-\ell+1)!}$, and depending on the cycle length the parity alternates,. Furthermore, none of the elements in this cycle are fixed points, so we have the recurrence

$$
\begin{aligned}
f_{n+1}(x) & =\sum_{\pi \in S_{n+1}} \sigma(\pi) x^{\nu(\pi)}=\sum_{\pi \in S_{n}} \sigma(\pi) x^{\nu(\pi)+1}-\frac{n!}{(n-1)!} \sum_{\pi \in S_{n-1}} \sigma(\pi) x^{\nu(\pi)} \\
& +\frac{n!}{(n-2)!} \sum_{\pi \in S_{n-2}} \sigma(\pi) x^{\nu(\pi)}-\frac{n!}{(n-3)!} \sum_{\pi \in S_{n-3}} \sigma(\pi) x^{\nu(\pi)}+\ldots \\
& =x f_{n}(x)+n \cdot\left[f_{n}(x)-x f_{n-1}(x)\right]
\end{aligned}
$$

Furthermore, we can hand-calculate that $f_{1}(x)=x, f_{2}(x)=x^{2}-1$, and after a few terms we can guess that $f_{n}(x)=(x-1)^{n-1}(x+n-1)$. To show by induction, we just need

$$
x(x-1)^{n-1}(x+n-1)+n \cdot\left[(x-1)^{n-1}(x+n-1)-x(x-1)^{n-2}(x+n-2)\right]=(x-1)^{n}(x+n)
$$

11. (IMC 2016) Let S_{n} denote the set of permutations of the sequence $(1,2, \ldots, n)$. For every permutation $\pi=$ $\left(\pi_{1}, \ldots, \pi_{n}\right)$, let $\operatorname{inv}(\pi)$ be the number of pairs $1 \leq i<j \leq n$ with $\pi_{i}>\pi_{j}$; i.e., the number of inversions in π. Denote by $f(n)$ the number of permutations $\pi \in S_{n}$ for which $\operatorname{inv}(\pi)$ is divisible by $n+1$.
Prove that there exist infinitely many primes p such that $f(p-1)>\frac{(p-1)!}{p}$, and infinitely many primes p such that $f(p-1)<\frac{(p-1)!}{p}$.
Solution: Let $g_{n}(x):=\sum_{\sigma \in S_{n}} x^{\operatorname{inv}(\sigma)}$. Let's add $n+1$ in all possible places to all elements of S_{n}. If we add $n+1$ at the very end of a permutation, it creates no new inversions. If we add it second-to-last, it creates one new inversion. All the way until when we add it to the very beginning where it creates n new inversions. Thus $g_{n+1}(x)=\left(1+x+\cdots+x^{n}\right) g_{n}(x)$. With $g_{1}(x)=1$, we have

$$
g_{n}(x)=(1+x)\left(1+x+x^{2}\right) \ldots\left(1+x+\cdots+x^{n-1}\right)=\frac{(x-1)\left(x^{2}-1\right) \ldots\left(x^{n}-1\right)}{(x-1)^{n}}
$$

where $x \neq 1$ and $g_{n}(1)=\left|S_{n}\right|=n!$. Using roots of unity filter with $\omega=e^{2 \pi i / p}$ for prime $p \geq 3$,

$$
p f(p-1)=(p-1)!+\sum_{k=1}^{p-1} \frac{\left(\omega^{k}-1\right)\left(\omega^{2 k}-1\right) \ldots\left(\omega^{(p-1) k}-1\right)}{\left(\omega^{k}-1\right)^{p-1}}
$$

The numerator is simplified to p using the identity $\left(x-\omega^{k}\right)\left(x-\omega^{2 k}\right) \ldots\left(x-\omega^{(p-1) k}\right)=1+x+\cdots+x^{p-1}$. Thus it remains to show that the following sum is positive when $p \equiv 3(\bmod 4)$ and negative when $p \equiv 1(\bmod 4)$:

$$
\begin{aligned}
\sum_{k=1}^{p-1} \frac{1}{\left(\omega^{k}-1\right)^{p-1}} & =\sum_{k=1}^{(p-1) / 2}\left[\frac{1}{\left(\omega^{k}-1\right)^{p-1}}+\frac{1}{\left(\omega^{-k}-1\right)^{p-1}}\right] \\
& =\sum_{k=1}^{(p-1) / 2} \frac{1+\omega^{(p-1) k}}{\left(\omega^{k}-1\right)^{p-1}}=\sum_{k=1}^{(p-1) / 2} \frac{\frac{\omega^{(p-1) k / 2}+\omega^{-(p-1) k / 2}}{2}}{\left(\frac{\omega^{k / 2}-\omega^{-k / 2}}{2 i}\right)^{p-1}} \frac{2}{(2 i)^{p-1}} \\
& =\frac{1}{2^{p}(-1)^{(p-1) / 2}} \sum_{k=1}^{(p-1) / 2} \frac{\cos \frac{k(p-1) \pi}{p}}{\left(\sin \frac{k \pi}{p}\right)^{p-1}}=\frac{1}{2^{p}(-1)^{(p-1) / 2}} \sum_{k=1}^{(p-1) / 2} \frac{(-1)^{k} \cos \frac{k \pi}{p}}{\left(\sin \frac{k \pi}{p}\right)^{p-1}}
\end{aligned}
$$

For very large p, the $k=1$ term determines the sign of the whole sum since $\cos \frac{k \pi}{p}$ is decreasing in magnitude and $\sin \frac{k \pi}{p}$ is increasing in magnitude (note that $0<\frac{k \pi}{p}<\frac{\pi}{2}$). Thus, for very large p we get that $(-1)^{(p+1) / 2}$ is the sign of $p f(p-1)-(p-1)$!, the desired result.

