## Generating Functions

September 21, 2017

## Useful Identities

For $|x|<1$, the following identities hold:

1. (Taylor series) $f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}$
need $f$ to be analytic at 0
2. $\frac{1}{(1-x)^{n}}=\sum_{k=0}^{\infty}\binom{k+(n-1)}{n-1} x^{k}$ and $\prod_{k=0}^{\infty}\left(1+x^{2^{k}}\right)=\frac{1}{1-x}$
need $|x|<1$
3. $\sum_{i \in A, j \in B}\left(\alpha_{i} x^{i}\right)\left(\beta_{j} x^{j}\right)=\left(\sum_{i \in A} \alpha_{i} x^{i}\right)\left(\sum_{j \in B} \beta_{j} x^{j}\right)$
need absolute convergence

## Warmup

1. How to multiply: Expand $\left(1+x^{2}+x^{7}+x^{20}\right)\left(x+x^{3}+x^{4}\right)$. Expand $\left(1+3 x^{2}+x^{7}+4 x^{20}\right)\left(x-x^{3}+x^{4}\right)$.

## Things you can do to a GF

1. $\left(a_{0}, a_{1}, a_{2}, \ldots\right),\left(b_{0}, b_{1}, b_{2}, \ldots\right) \mapsto\left(a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, \ldots\right): G_{1}, G_{2} \mapsto G_{1}+G_{2}$
2. $\left(a_{0}, a_{1}, a_{2}, \ldots\right) \mapsto\left(\alpha a_{0}, \alpha a_{1}, \alpha a_{2}, \ldots\right): G \mapsto \alpha G$
3. $\left(a_{0}, a_{1}, a_{2}, \ldots\right) \mapsto\left(0, a_{0}, a_{1}, \ldots\right): G(x) \mapsto x G(x)$
4. $\left(a_{0}, a_{1}, a_{2}, \ldots\right) \mapsto\left(a_{1}, a_{2}, a_{3}, \ldots\right): G(x) \mapsto \frac{G(x)-a_{0}}{x}$
5. $\left(a_{0}, a_{1}, a_{2}, \ldots\right) \mapsto\left(a_{0}, a_{0}+a_{1}, a_{0}+a_{1}+a_{2}, \ldots\right): G(x) \mapsto \frac{G(x)}{1-x}$
6. $\left(a_{0}, a_{1}, a_{2}, \ldots\right) \mapsto\left(a_{1}, 2 a_{2}, 3 a_{3}, \ldots\right): G \mapsto G^{\prime}$
7. $\left(a_{0}, a_{1}, a_{2}, \ldots\right) \mapsto\left(C, a_{0}, \frac{a_{1}}{1}, \frac{a_{2}}{2}, \ldots\right)$
8. Prove that the GF of $H_{n}$ is $\frac{-\log (1-x)}{1-x}$.

## Recurrences

1. Solve the recurrence $a_{0}=1, a_{1}=2, a_{n}=3 a_{n-1}-2 a_{n-2}$.
2. Find the value of $1^{2}+2^{2}+\cdots+n^{2}$.
3. The Catalan numbers are defined by $C_{0}=1$ and

$$
C_{n}=C_{n-1} C_{0}+C_{n-2} C_{1}+\cdots+C_{0} C_{n-1}
$$

for $n \geq 1$. Find the generating function for $C_{n}$, and use it to find an explicit formula for $C_{n}$.

## Summing

1. Find the value of $\sum_{n=0}^{\infty} \frac{n}{2^{n}}$. What about $\sum_{n=0}^{\infty} \frac{n^{2}}{2^{n}}$ ?
2. Given $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots$, find $a_{0}+a_{4} x^{4}+a_{8} x^{8}+\ldots$.
3. Find the value of $\sum_{n=0}^{\infty} \frac{1}{2^{2^{n}}-2^{-2^{n}}}$.

## Counting

1. How many solutions are there to $x_{1}+x_{2}+\cdots+x_{m}=n$ such that $0 \leq x_{1}, x_{2}, \ldots, x_{m} \leq n$ ? Such that $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{m} \leq n ?$
2. Determine the number of $k$-element subsets of $[n]$ such that the $i$ th largest element of the subset is congruent to $i \bmod 2$.

## Two fairly hard problems

1. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be the sequence defined by

$$
a_{0}=1, \quad a_{n+1}=\frac{1}{n+1} \sum_{k=0}^{n} \frac{a_{k}}{n-k+1}
$$

Find the limit

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{a_{k}}{2^{k}}
$$

2. Evaluate

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \sum_{n=0}^{\infty} \frac{1}{k 2^{n}+1}
$$

## Problems

1. Prove that $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.
2. Find the value of $\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}$. Deduce that the number of subsets of $\{1,2, \ldots, n\}$ with odd size is equal to the number with even size.
3. By comparing the coefficient of $x^{n}$ in $(x+1)^{a+b}$ and $(x+1)^{a}(x+1)^{b}$, prove that

$$
\binom{a+b}{n}=\sum_{k=0}^{n}\binom{a}{k}\binom{b}{n-k}
$$

4. Let $\{1,1,2,3,5,8, \ldots\}$ be the Fibonacci sequence. Prove that the number

$$
\frac{1}{10^{3}}+\frac{1}{10^{6}}+\frac{2}{10^{9}}+\frac{3}{10^{12}}+\cdots=0.001001002003 \ldots
$$

is a rational number. What is it in reduced form?
5. Find an explicit formula for the $n$th Fibonacci number. Hint: this formula will likely involve the number $\frac{1+\sqrt{5}}{2}$, a root of $x^{2}-x-1$.
6. How many $n$-digit numbers, whose digits are in the set $\{2,3,7,9\}$ are divisible by 3 ?

