Recitation #9

These notes are from http://math.cmu.edu/~cocox/teaching/discrete20/rec9.pdf

Let (Ω, \mathbf{Pr}) be a finite probability space. How many mutually independent events can we define in this space? That is to ask, how large can n be (with respect to $|\Omega|$) if $A_1, \ldots, A_n \subseteq \Omega$ are mutually independent? Well, as stated, n could be unbounded since we could take $A_i = \emptyset$ or $A_i = \Omega$ for all i. Therefore, in order to make the question interesting, we must make some assumption on the A_i 's.

An event $A \subseteq \Omega$ is called *nontrivial* if $\mathbf{Pr}[A] \notin \{0, 1\}$. This is a reasonable assumption to include on the A_i 's since A is independent with A if and only if A is a trivial event. Assuming that each A_i is nontrivial, we can show that m cannot be very large compared to $|\Omega|$; in particular, $n \leq \lg |\Omega|$.

Before proving this, observe that this bound is tight for some probability spaces. Indeed, consider the probability space formed by a sequence of n independent coin-flips; then $|\Omega| = 2^n$ and the events {flip *i* is heads} are mutually independent.

In fact, this is the whole reason that we like to use independent coin-flips to generate probability spaces: we love independence!

Claim 1. If $A_1, \ldots, A_n \subseteq \Omega$ are mutually independent and nontrivial events, then $|\Omega| \ge 2^n$.

Proof. For ease of notation, for a set $A \subseteq \Omega$, let $A^1 = A$ and $A^{-1} = \Omega \setminus A$.

For a tuple $x = (x_1, \ldots, x_n) \in \{\pm 1\}^n$, define $f(x) = A_1^{x_1} \cap \cdots \cap A_n^{x_n}$, so f(x) is a subset of Ω formed by intersecting some A_i 's and some complements of the A_i 's.

Recall that if A, B are independent events, then so are A, B^{-1} , and A^{-1}, B , and A^{-1}, B^{-1} . By a straightforward induction on n, since A_1, \ldots, A_n are mutually independent events, then so are $A_1^{x_1}, \ldots, A_n^{x_n}$ for any $x \in \{\pm 1\}^n$. Using this fact along with the fact that $\mathbf{Pr}[A_i^{x_i}] \neq 0$ since A_i is nontrivial, we see that

$$\mathbf{Pr}[f(x)] = \prod_{i \in [n]} \mathbf{Pr}[A_i^{x_i}] \neq 0.$$

In particular, $f(x) \neq \emptyset$ for every $x \in \{\pm 1\}^n$, i.e. $|f(x)| \ge 1$. Now, consider any $x \neq y \in \{\pm 1\}^n$ and observe that $f(x) \cap f(y) = \emptyset$ since if, say, $x_i = 1$ and $y_i = -1$, then $f(x) \subseteq A$ and $f(y) \subseteq \Omega \setminus A$.

We conclude that

$$|\Omega| \ge \left| \bigcup_{x \in \{\pm 1\}^n} f(x) \right| = \sum_{x \in \{\pm 1\}^n} |f(x)| \ge 2^n.$$

Consider the following random experiment. We begin with r red balls, b blue balls and w white balls in a bucket. We reach in and pick one of the balls uniformly at random:

- If the ball is red, we win.
- If the ball is blue, we lose.
- If the ball is white, we throw it away and redraw.

What is the probability that we win? Well, if w = 0, then it's easy to see that $\Pr[\text{win}] = \frac{r}{r+b}$ since we draw either a red or blue ball. What if w is larger?

Claim 2. For any $w, r, b \in \mathbb{N}$ with r + b > 0, we have $\Pr[win] = \frac{r}{r+b}$.

This makes intuitive sense. Indeed, drawing a white ball simply delays the inevitable event of either winning or losing. So, we can think about the experiment as: wait some random amount of time, and then draw either a red or blue ball uniformly at random.

But how to make this formal? There are a few ways, but let's use the law of total probability. Recall that if events A_1, \ldots, A_n form a partition of our probability space, then for any other event B,

$$\mathbf{Pr}[B] = \sum_{i=1}^{n} \mathbf{Pr}[B \mid A_i] \mathbf{Pr}[A_i].$$

Proof of claim. Let W denote the number of white balls that we draw before finally drawing either a red or blue ball. Observe that $W \in \{0, ..., w\}$ and the events $\{W = 0\}, \{W = 1\}, ..., \{W = w\}$ form a partition of our probability space. We can thus compute,

$$\mathbf{Pr}[\text{win}] = \sum_{i=0}^{w} \mathbf{Pr}[\text{win} \mid W = i] \mathbf{Pr}[W = i]$$
$$= \sum_{i=0}^{w} \mathbf{Pr}[\text{win} \mid \text{we draw either a red or blue ball at time } i + 1] \mathbf{Pr}[W = i]$$
$$= \sum_{i=0}^{w} \frac{r}{r+b} \mathbf{Pr}[W = i] = \frac{r}{r+b}.$$

where the last equality follows from the fact that $\sum_{i=0}^{w} \mathbf{Pr}[W=i] = 1$.

Here are a couple things to think about [not discussed in recitation]:

• If we replace the white ball instead of throwing it away, then we still have $\mathbf{Pr}[\text{win}] = \frac{r}{r+b}$. Here's a brief sketch:

Using the law of total probability as above, we can show that $\mathbf{Pr}[\text{win}] = \frac{r}{r+b} (1 - \mathbf{Pr}[W = \infty])$. Then, for any $n \in \mathbb{N}$, $\mathbf{Pr}[W = \infty] \leq \mathbf{Pr}[W \geq n] = (\frac{w}{w+r+b})^n$, so

$$\mathbf{Pr}[W=\infty] \le \lim_{n \to \infty} \left(\frac{w}{w+r+b}\right)^n = 0.$$

• If we instead double the number of white balls whenever one is drawn, then $\Pr[\text{win}] < \frac{r}{r+b}$ (assuming r, w > 0). Here's a sketch:

As above, using the law of total probability, we can show that $\mathbf{Pr}[\text{win}] = \frac{r}{r+b} (1 - \mathbf{Pr}[W = \infty])$. Now, we know that $\sum_{t\geq 0} 2^{-t} < \infty$, so $\lim_{n\to\infty} \sum_{t\geq n} 2^{-t} = 0$. As such, we can select $m \in \mathbb{N}$ so that

$$\sum_{t \ge m} 2^{-t} < \frac{w}{r+b}.$$

In order to go further, we'll need to make use of Lemma 3 below with $A_n = \{W \ge n\}$ (noting that $\bigcap_{n\ge 0} \{W \ge n\} = \{W = \infty\}$).

$$\begin{aligned} \mathbf{Pr}[W = \infty] &= \lim_{n \to \infty} \mathbf{Pr}[W \ge n] = \lim_{n \to \infty} \prod_{t=0}^{n} \frac{2^t w}{2^t w + r + b} = \lim_{n \to \infty} \prod_{t=0}^{n} \left(1 - \frac{r + b}{2^t w + r + b}\right) \\ &\ge \prod_{t=0}^{m-1} \left(1 - \frac{r + b}{2^t w + r + b}\right) \lim_{n \to \infty} \prod_{t=m}^{n} \left(1 - \frac{r + b}{2^t w}\right) \\ &\ge \left(1 - \frac{r + b}{w + r + b}\right)^m \lim_{n \to \infty} \left(1 - \sum_{t=m}^n \frac{r + b}{2^t w}\right) \\ &= \left(\frac{w}{w + r + b}\right)^m \left(1 - \frac{r + b}{w} \sum_{t \ge m} 2^{-t}\right) > 0, \end{aligned}$$

by the choice of m.

Lemma 3. Let (Ω, \mathbf{Pr}) be a finite or countable probability space and let $A_0 \supseteq A_1 \supseteq \cdots$ be events. Then

$$\mathbf{Pr}\left[\bigcap_{n\geq 0}A_n\right] = \lim_{n\to\infty}\mathbf{Pr}[A_n].$$

Proof. Firstly, let's notice that $\lim_{n\to\infty} \mathbf{Pr}[A_n]$ exists since $A_n \supseteq A_{n+1} \implies \mathbf{Pr}[A_n] \ge \mathbf{Pr}[A_{n+1}]$, so $(\mathbf{Pr}[A_n])$ is a sequence of non-increasing numbers in [0, 1].

Now, set

$$A = \bigcap_{n \ge 0} A_n, \qquad B = \Omega \setminus A, \qquad B_n = \Omega \setminus A_n,$$

so $B = \bigcup_{n \ge 0} B_n$ and $B_0 \subseteq B_1 \subseteq \cdots$. Now, for $n \ge 0$, let $C_n = B_n \setminus B_{n-1}$ (where $B_{-1} = \emptyset$) and observe that C_1, C_2, \ldots are disjoint and $B = \bigcup_{n \ge 1} C_n$. Thus,

$$\mathbf{Pr}[B] = \sum_{x \in B} \mathbf{Pr}[x] = \sum_{x \in \bigcup_{n \ge 0} C_n} \mathbf{Pr}[x] = \sum_{n \ge 0} \sum_{x \in C_n} \mathbf{Pr}[x] = \sum_{n \ge 0} \mathbf{Pr}[C_n]$$
$$= \sum_{n \ge 0} \mathbf{Pr}[B_n \setminus B_{n-1}] = \lim_{N \to \infty} \sum_{n=0}^{N} (\mathbf{Pr}[B_n] - \mathbf{Pr}[B_{n-1}])$$
$$= \lim_{N \to \infty} (\mathbf{Pr}[B_N] - \mathbf{Pr}[B_{-1}]) = \lim_{N \to \infty} \mathbf{Pr}[B_N] - \mathbf{Pr}[\varnothing] = \lim_{N \to \infty} \mathbf{Pr}[B_N].$$

Therefore,

$$\mathbf{Pr}[A] = 1 - \mathbf{Pr}[B] = 1 - \lim_{n \to \infty} \mathbf{Pr}[B_n] = \lim_{n \to \infty} \mathbf{Pr}[A_n].$$