
Discrete Math Recitation #9 Mar 24

These notes are from http://math.cmu.edu/~cocox/teaching/discrete20/rec9.pdf

Let (Ω,Pr) be a finite probability space. How many mutually independent events can we define

in this space? That is to ask, how large can n be (with respect to |Ω|) if A1, . . . , An ⊆ Ω are mutually

independent? Well, as stated, n could be unbounded since we could take Ai = ∅ or Ai = Ω for all i.

Therefore, in order to make the question interesting, we must make some assumption on the Ai’s.

An event A ⊆ Ω is called nontrivial if Pr[A] /∈ {0, 1}. This is a reasonable assumption to include

on the Ai’s since A is independent with A if and only if A is a trivial event. Assuming that each Ai

is nontrivial, we can show that m cannot be very large compared to |Ω|; in particular, n ≤ lg |Ω|.
Before proving this, observe that this bound is tight for some probability spaces. Indeed, consider

the probability space formed by a sequence of n independent coin-flips; then |Ω| = 2n and the events

{flip i is heads} are mutually independent.

In fact, this is the whole reason that we like to use independent coin-flips to generate probability

spaces: we love independence!

Claim 1. If A1, . . . , An ⊆ Ω are mutually independent and nontrivial events, then |Ω| ≥ 2n.

Proof. For ease of notation, for a set A ⊆ Ω, let A1 = A and A−1 = Ω \A.

For a tuple x = (x1, . . . , xn) ∈ {±1}n, define f(x) = Ax1
1 ∩ · · · ∩ Axn

n , so f(x) is a subset of Ω

formed by intersecting some Ai’s and some complements of the Ai’s.

Recall that if A,B are independent events, then so are A,B−1, and A−1, B, and A−1, B−1. By

a straightforward induction on n, since A1, . . . , An are mutually independent events, then so are

Ax1
1 , . . . , Axn

n for any x ∈ {±1}n. Using this fact along with the fact that Pr[Axi
i ] 6= 0 since Ai is

nontrivial, we see that

Pr[f(x)] =
∏
i∈[n]

Pr[Axi
i ] 6= 0.

In particular, f(x) 6= ∅ for every x ∈ {±1}n, i.e. |f(x)| ≥ 1. Now, consider any x 6= y ∈ {±1}n and

observe that f(x) ∩ f(y) = ∅ since if, say, xi = 1 and yi = −1, then f(x) ⊆ A and f(y) ⊆ Ω \A.

We conclude that

|Ω| ≥
∣∣∣∣ ⋃
x∈{±1}n

f(x)

∣∣∣∣ =
∑

x∈{±1}n
|f(x)| ≥ 2n.

Consider the following random experiment. We begin with r red balls, b blue balls and w white

balls in a bucket. We reach in and pick one of the balls uniformly at random:

• If the ball is red, we win.

• If the ball is blue, we lose.

• If the ball is white, we throw it away and redraw.

What is the probability that we win? Well, if w = 0, then it’s easy to see that Pr[win] = r
r+b

since we draw either a red or blue ball. What if w is larger?
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Claim 2. For any w, r, b ∈ N with r + b > 0, we have Pr[win] = r
r+b .

This makes intuitive sense. Indeed, drawing a white ball simply delays the inevitable event of

either winning or losing. So, we can think about the experiment as: wait some random amount of

time, and then draw either a red or blue ball uniformly at random.

But how to make this formal? There are a few ways, but let’s use the law of total probability.

Recall that if events A1, . . . , An form a partition of our probability space, then for any other event B,

Pr[B] =
n∑

i=1

Pr[B | Ai]Pr[Ai].

Proof of claim. Let W denote the number of white balls that we draw before finally drawing either

a red or blue ball. Observe that W ∈ {0, . . . , w} and the events {W = 0}, {W = 1}, . . . , {W = w}
form a partition of our probability space. We can thus compute,

Pr[win] =

w∑
i=0

Pr[win |W = i]Pr[W = i]

=

w∑
i=0

Pr[win | we draw either a red or blue ball at time i + 1]Pr[W = i]

=

w∑
i=0

r

r + b
Pr[W = i] =

r

r + b
.

where the last equality follows from the fact that
∑w

i=0Pr[W = i] = 1.

Here are a couple things to think about [not discussed in recitation]:

• If we replace the white ball instead of throwing it away, then we still have Pr[win] = r
r+b . Here’s

a brief sketch:

Using the law of total probability as above, we can show that Pr[win] = r
r+b

(
1−Pr[W =∞]

)
.

Then, for any n ∈ N, Pr[W =∞] ≤ Pr[W ≥ n] =
(

w
w+r+b

)n
, so

Pr[W =∞] ≤ lim
n→∞

(
w

w + r + b

)n

= 0.

• If we instead double the number of white balls whenever one is drawn, then Pr[win] < r
r+b

(assuming r, w > 0). Here’s a sketch:

As above, using the law of total probability, we can show that Pr[win] = r
r+b

(
1−Pr[W =∞]

)
.

Now, we know that
∑

t≥0 2−t <∞, so limn→∞
∑

t≥n 2−t = 0. As such, we can select m ∈ N so

that ∑
t≥m

2−t <
w

r + b
.

2



In order to go further, we’ll need to make use of Lemma 3 below with An = {W ≥ n} (noting

that
⋂

n≥0{W ≥ n} = {W =∞}).

Pr[W =∞] = lim
n→∞

Pr[W ≥ n] = lim
n→∞

n∏
t=0

2tw

2tw + r + b
= lim

n→∞

n∏
t=0

(
1− r + b

2tw + r + b

)

≥
m−1∏
t=0

(
1− r + b

2tw + r + b

)
lim
n→∞

n∏
t=m

(
1− r + b

2tw

)

≥
(

1− r + b

w + r + b

)m

lim
n→∞

(
1−

n∑
t=m

r + b

2tw

)
=

(
w

w + r + b

)m(
1− r + b

w

∑
t≥m

2−t
)

> 0,

by the choice of m.

Lemma 3. Let (Ω,Pr) be a finite or countable probability space and let A0 ⊇ A1 ⊇ · · · be events.

Then

Pr

[⋂
n≥0

An

]
= lim

n→∞
Pr[An].

Proof. Firstly, let’s notice that limn→∞Pr[An] exists since An ⊇ An+1 =⇒ Pr[An] ≥ Pr[An+1], so(
Pr[An]

)
is a sequence of non-increasing numbers in [0, 1].

Now, set

A =
⋂
n≥0

An, B = Ω \A, Bn = Ω \An,

so B =
⋃

n≥0Bn and B0 ⊆ B1 ⊆ · · · . Now, for n ≥ 0, let Cn = Bn \ Bn−1 (where B−1 = ∅) and

observe that C1, C2, . . . are disjoint and B =
⋃

n≥1Cn. Thus,

Pr[B] =
∑
x∈B

Pr[x] =
∑

x∈
⋃

n≥0 Cn

Pr[x] =
∑
n≥0

∑
x∈Cn

Pr[x] =
∑
n≥0

Pr[Cn]

=
∑
n≥0

Pr[Bn \Bn−1] = lim
N→∞

N∑
n=0

(
Pr[Bn]−Pr[Bn−1]

)
= lim

N→∞

(
Pr[BN ]−Pr[B−1]

)
= lim

N→∞
Pr[BN ]−Pr[∅] = lim

N→∞
Pr[BN ].

Therefore,

Pr[A] = 1−Pr[B] = 1− lim
n→∞

Pr[Bn] = lim
n→∞

Pr[An].
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