These notes are from http://math.cmu.edu/~cocox/teaching/discrete20/rec9.pdf

Let $(\Omega, \mathbf{P r})$ be a finite probability space. How many mutually independent events can we define in this space? That is to ask, how large can n be (with respect to $|\Omega|)$ if $A_{1}, \ldots, A_{n} \subseteq \Omega$ are mutually independent? Well, as stated, n could be unbounded since we could take $A_{i}=\varnothing$ or $A_{i}=\Omega$ for all i. Therefore, in order to make the question interesting, we must make some assumption on the A_{i} 's.

An event $A \subseteq \Omega$ is called nontrivial if $\operatorname{Pr}[A] \notin\{0,1\}$. This is a reasonable assumption to include on the A_{i} 's since A is independent with A if and only if A is a trivial event. Assuming that each A_{i} is nontrivial, we can show that m cannot be very large compared to $|\Omega|$; in particular, $n \leq \lg |\Omega|$.

Before proving this, observe that this bound is tight for some probability spaces. Indeed, consider the probability space formed by a sequence of n independent coin-flips; then $|\Omega|=2^{n}$ and the events \{flip i is heads\} are mutually independent.

In fact, this is the whole reason that we like to use independent coin-flips to generate probability spaces: we love independence!

Claim 1. If $A_{1}, \ldots, A_{n} \subseteq \Omega$ are mutually independent and nontrivial events, then $|\Omega| \geq 2^{n}$.
Proof. For ease of notation, for a set $A \subseteq \Omega$, let $A^{1}=A$ and $A^{-1}=\Omega \backslash A$.
For a tuple $x=\left(x_{1}, \ldots, x_{n}\right) \in\{ \pm 1\}^{n}$, define $f(x)=A_{1}^{x_{1}} \cap \cdots \cap A_{n}^{x_{n}}$, so $f(x)$ is a subset of Ω formed by intersecting some A_{i} 's and some complements of the A_{i} 's.

Recall that if A, B are independent events, then so are A, B^{-1}, and A^{-1}, B, and A^{-1}, B^{-1}. By a straightforward induction on n, since A_{1}, \ldots, A_{n} are mutually independent events, then so are $A_{1}^{x_{1}}, \ldots, A_{n}^{x_{n}}$ for any $x \in\{ \pm 1\}^{n}$. Using this fact along with the fact that $\operatorname{Pr}\left[A_{i}^{x_{i}}\right] \neq 0$ since A_{i} is nontrivial, we see that

$$
\operatorname{Pr}[f(x)]=\prod_{i \in[n]} \operatorname{Pr}\left[A_{i}^{x_{i}}\right] \neq 0 .
$$

In particular, $f(x) \neq \varnothing$ for every $x \in\{ \pm 1\}^{n}$, i.e. $|f(x)| \geq 1$. Now, consider any $x \neq y \in\{ \pm 1\}^{n}$ and observe that $f(x) \cap f(y)=\varnothing$ since if, say, $x_{i}=1$ and $y_{i}=-1$, then $f(x) \subseteq A$ and $f(y) \subseteq \Omega \backslash A$.

We conclude that

$$
|\Omega| \geq\left|\bigcup_{x \in\{ \pm 1\}^{n}} f(x)\right|=\sum_{x \in\{ \pm 1\}^{n}}|f(x)| \geq 2^{n} .
$$

Consider the following random experiment. We begin with r red balls, b blue balls and w white balls in a bucket. We reach in and pick one of the balls uniformly at random:

- If the ball is red, we win.
- If the ball is blue, we lose.
- If the ball is white, we throw it away and redraw.

What is the probability that we win? Well, if $w=0$, then it's easy to see that $\operatorname{Pr}[\mathrm{win}]=\frac{r}{r+b}$ since we draw either a red or blue ball. What if w is larger?

Claim 2. For any $w, r, b \in \mathbb{N}$ with $r+b>0$, we have $\operatorname{Pr}[$ win $]=\frac{r}{r+b}$.
This makes intuitive sense. Indeed, drawing a white ball simply delays the inevitable event of either winning or losing. So, we can think about the experiment as: wait some random amount of time, and then draw either a red or blue ball uniformly at random.

But how to make this formal? There are a few ways, but let's use the law of total probability. Recall that if events A_{1}, \ldots, A_{n} form a partition of our probability space, then for any other event B,

$$
\operatorname{Pr}[B]=\sum_{i=1}^{n} \operatorname{Pr}\left[B \mid A_{i}\right] \operatorname{Pr}\left[A_{i}\right] .
$$

Proof of claim. Let W denote the number of white balls that we draw before finally drawing either a red or blue ball. Observe that $W \in\{0, \ldots, w\}$ and the events $\{W=0\},\{W=1\}, \ldots,\{W=w\}$ form a partition of our probability space. We can thus compute,

$$
\begin{aligned}
\operatorname{Pr}[\operatorname{win}] & =\sum_{i=0}^{w} \operatorname{Pr}[\operatorname{win} \mid W=i] \operatorname{Pr}[W=i] \\
& =\sum_{i=0}^{w} \operatorname{Pr}[\text { win } \mid \text { we draw either a red or blue ball at time } i+1] \operatorname{Pr}[W=i] \\
& =\sum_{i=0}^{w} \frac{r}{r+b} \operatorname{Pr}[W=i]=\frac{r}{r+b}
\end{aligned}
$$

where the last equality follows from the fact that $\sum_{i=0}^{w} \operatorname{Pr}[W=i]=1$.
Here are a couple things to think about [not discussed in recitation]:

- If we replace the white ball instead of throwing it away, then we still have $\operatorname{Pr}[w i n]=\frac{r}{r+b}$. Here's a brief sketch:

Using the law of total probability as above, we can show that $\operatorname{Pr}[$ win $]=\frac{r}{r+b}(1-\operatorname{Pr}[W=\infty])$. Then, for any $n \in \mathbb{N}, \operatorname{Pr}[W=\infty] \leq \operatorname{Pr}[W \geq n]=\left(\frac{w}{w+r+b}\right)^{n}$, so

$$
\operatorname{Pr}[W=\infty] \leq \lim _{n \rightarrow \infty}\left(\frac{w}{w+r+b}\right)^{n}=0
$$

- If we instead double the number of white balls whenever one is drawn, then $\operatorname{Pr}[$ win $]<\frac{r}{r+b}$ (assuming $r, w>0$). Here's a sketch:
As above, using the law of total probability, we can show that $\operatorname{Pr}[\mathrm{win}]=\frac{r}{r+b}(1-\operatorname{Pr}[W=\infty])$. Now, we know that $\sum_{t \geq 0} 2^{-t}<\infty$, so $\lim _{n \rightarrow \infty} \sum_{t \geq n} 2^{-t}=0$. As such, we can select $m \in \mathbb{N}$ so that

$$
\sum_{t \geq m} 2^{-t}<\frac{w}{r+b}
$$

In order to go further, we'll need to make use of Lemma 3 below with $A_{n}=\{W \geq n\}$ (noting that $\left.\bigcap_{n \geq 0}\{W \geq n\}=\{W=\infty\}\right)$.

$$
\begin{aligned}
\operatorname{Pr}[W=\infty] & =\lim _{n \rightarrow \infty} \operatorname{Pr}[W \geq n]=\lim _{n \rightarrow \infty} \prod_{t=0}^{n} \frac{2^{t} w}{2^{t} w+r+b}=\lim _{n \rightarrow \infty} \prod_{t=0}^{n}\left(1-\frac{r+b}{2^{t} w+r+b}\right) \\
& \geq \prod_{t=0}^{m-1}\left(1-\frac{r+b}{2^{t} w+r+b}\right) \lim _{n \rightarrow \infty} \prod_{t=m}^{n}\left(1-\frac{r+b}{2^{t} w}\right) \\
& \geq\left(1-\frac{r+b}{w+r+b}\right)^{m} \lim _{n \rightarrow \infty}\left(1-\sum_{t=m}^{n} \frac{r+b}{2^{t} w}\right) \\
& =\left(\frac{w}{w+r+b}\right)^{m}\left(1-\frac{r+b}{w} \sum_{t \geq m} 2^{-t}\right)>0,
\end{aligned}
$$

by the choice of m.
Lemma 3. Let $(\Omega, \mathbf{P r})$ be a finite or countable probability space and let $A_{0} \supseteq A_{1} \supseteq \cdots$ be events. Then

$$
\operatorname{Pr}\left[\bigcap_{n \geq 0} A_{n}\right]=\lim _{n \rightarrow \infty} \operatorname{Pr}\left[A_{n}\right]
$$

Proof. Firstly, let's notice that $\lim _{n \rightarrow \infty} \operatorname{Pr}\left[A_{n}\right]$ exists since $A_{n} \supseteq A_{n+1} \Longrightarrow \operatorname{Pr}\left[A_{n}\right] \geq \operatorname{Pr}\left[A_{n+1}\right]$, so $\left(\operatorname{Pr}\left[A_{n}\right]\right)$ is a sequence of non-increasing numbers in $[0,1]$.

Now, set

$$
A=\bigcap_{n \geq 0} A_{n}, \quad B=\Omega \backslash A, \quad B_{n}=\Omega \backslash A_{n},
$$

so $B=\bigcup_{n \geq 0} B_{n}$ and $B_{0} \subseteq B_{1} \subseteq \cdots$. Now, for $n \geq 0$, let $C_{n}=B_{n} \backslash B_{n-1}$ (where $B_{-1}=\varnothing$) and observe that C_{1}, C_{2}, \ldots are disjoint and $B=\bigcup_{n \geq 1} C_{n}$. Thus,

$$
\begin{aligned}
\operatorname{Pr}[B] & =\sum_{x \in B} \operatorname{Pr}[x]=\sum_{x \in \cup_{n \geq 0} C_{n}} \operatorname{Pr}[x]=\sum_{n \geq 0} \sum_{x \in C_{n}} \operatorname{Pr}[x]=\sum_{n \geq 0} \operatorname{Pr}\left[C_{n}\right] \\
& =\sum_{n \geq 0} \operatorname{Pr}\left[B_{n} \backslash B_{n-1}\right]=\lim _{N \rightarrow \infty} \sum_{n=0}^{N}\left(\operatorname{Pr}\left[B_{n}\right]-\operatorname{Pr}\left[B_{n-1}\right]\right) \\
& =\lim _{N \rightarrow \infty}\left(\operatorname{Pr}\left[B_{N}\right]-\operatorname{Pr}\left[B_{-1}\right]\right)=\lim _{N \rightarrow \infty} \operatorname{Pr}\left[B_{N}\right]-\operatorname{Pr}[\varnothing]=\lim _{N \rightarrow \infty} \operatorname{Pr}\left[B_{N}\right] .
\end{aligned}
$$

Therefore,

$$
\operatorname{Pr}[A]=1-\operatorname{Pr}[B]=1-\lim _{n \rightarrow \infty} \operatorname{Pr}\left[B_{n}\right]=\lim _{n \rightarrow \infty} \operatorname{Pr}\left[A_{n}\right]
$$

