Discrete Math Recitation #9 Mar 24

These notes are from http://math.cmu.edu/~cocox/teaching/discrete20/rec9.pdf

Let (©2,Pr) be a finite probability space. How many mutually independent events can we define
in this space? That is to ask, how large can n be (with respect to |Q]) if Ay,..., A, C Q are mutually
independent? Well, as stated, n could be unbounded since we could take A; = @ or A; =  for all 4.
Therefore, in order to make the question interesting, we must make some assumption on the A;’s.

An event A C Q is called nontrivial if Pr[A] ¢ {0,1}. This is a reasonable assumption to include
on the A;’s since A is independent with A if and only if A is a trivial event. Assuming that each A;
is nontrivial, we can show that m cannot be very large compared to |Q2]; in particular, n <l1g|€|.

Before proving this, observe that this bound is tight for some probability spaces. Indeed, consider
the probability space formed by a sequence of n independent coin-flips; then |2| = 2™ and the events
{flip 7 is heads} are mutually independent.

In fact, this is the whole reason that we like to use independent coin-flips to generate probability
spaces: we love independence!

Claim 1. If A;,..., A, C Q are mutually independent and nontrivial events, then |2 > 2™.

Proof. For ease of notation, for a set A C Q, let A' = Aand A~ =Q\ A.

For a tuple © = (x1,...,2,) € {£1}", define f(z) = A7* N---N A%, so f(x) is a subset of
formed by intersecting some A;’s and some complements of the A;’s.

Recall that if A, B are independent events, then so are A, B~!, and A~!, B, and A~!,B~!. By
a straightforward induction on n, since Ai,..., A, are mutually independent events, then so are
ATY, ... AP for any x € {£1}". Using this fact along with the fact that Pr[A]"] # 0 since A; is
nontrivial, we see that

Pr(f(2)] = [ PrlAT] #0.
i€[n]

In particular, f(x) # @ for every x € {£1}", i.e. |f(z)| > 1. Now, consider any = # y € {£1}" and
observe that f(z)N f(y) = & since if, say, x; = 1 and y; = —1, then f(z) C A and f(y) CQ\ A.

We conclude that
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Consider the following random experiment. We begin with r red balls, b blue balls and w white
balls in a bucket. We reach in and pick one of the balls uniformly at random:

e If the ball is red, we win.
e If the ball is blue, we lose.
e If the ball is white, we throw it away and redraw.

What is the probability that we win? Well, if w = 0, then it’s easy to see that Pr[win] = rLer

since we draw either a red or blue ball. What if w is larger?
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Claim 2. For any w,r,b € N with r +b > 0, we have Pr[win| = 1.

This makes intuitive sense. Indeed, drawing a white ball simply delays the inevitable event of
either winning or losing. So, we can think about the experiment as: wait some random amount of
time, and then draw either a red or blue ball uniformly at random.

But how to make this formal? There are a few ways, but let’s use the law of total probability.
Recall that if events A1, ..., A, form a partition of our probability space, then for any other event B,

Pr[B] = ZPI‘[B | A;] Pr[4;).

Proof of claim. Let W denote the number of white balls that we draw before finally drawing either
a red or blue ball. Observe that W € {0,...,w} and the events {W = 0},{W = 1},... {W = w}
form a partition of our probability space. We can thus compute,

Pr{win| = Z Pr{win | W =] Pr[WW = 1]

w
= Z Pr[win | we draw either a red or blue ball at time i + 1] Pr[W = i]

1=0
“or r
izg r+0b rW =] r+0b
where the last equality follows from the fact that >.;" jPr[W =i] = 1. O

Here are a couple things to think about [not discussed in recitation]:

e If we replace the white ball instead of throwing it away, then we still have Pr{win] = 7. Here’s
a brief sketch:

Using the law of total probability as above, we can show that Pr[win| = 1 (1-Pr[W = q)).
Then, for any n € N, Pr[W = oo] < Pr[W > n| = (ﬁ)n, S0

Pr[W = oo < lim <w) = 0.
n—oo\w+7r+b

e If we instead double the number of white balls whenever one is drawn, then Pr|win] < T

(assuming r,w > 0). Here’s a sketch:

As above, using the law of total probability, we can show that Pr[win] = -2 (1 —Pr[W = o0]).
Now, we know that tho 27t < 00, 50 limy,_se0 thn 27t = 0. As such, we can select m € N so
that
w
d 2t< :
P r+b



In order to go further, we’ll need to make use of Lemma 3 below with 4,, = {WW > n} (noting
that (,5o{W > n} = {W = oc}).
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by the choice of m.

Lemma 3. Let (2,Pr) be a finite or countable probability space and let Ag 2O A1 D --- be events.
Then

Pr[ﬂ An} = nl;rglo Pr[4,].
n>0
Proof. Firstly, let’s notice that lim,_,o, Pr[A,] exists since A, D A,+1 = Pr[A,] > Pr[A4,,1+1], so
(Pr[A,]) is a sequence of non-increasing numbers in [0, 1].
Now, set
A= ()4, B=Q\A,  B,=Q\A,
n>0

so B = Unzo B, and By € B; C ---. Now, for n > 0, let C,, = By, \ Bp—1 (where B_; = &) and
observe that C1,Cs,... are disjoint and B = Un21 C,. Thus,

Pr(B]=) Prlz]= Y  Prlz]=> Y Prlz]=>) Pr[C,]

z€B 2€U, >0 Cn n>0z€Cy, n>0

=> Pr[B,\ B, 1] = Jim_ > (Pr[B,] — Pr[B,1])
n=0

n>0
= i — —1]) = lim Pr|{By|— Pr|@]| = lim Pr|By]|.
Jlim (Pr[By] - Pr(B_)]) = lim Pr(By] - Prl2] = lim Pr[By]
Therefore,
Pr[A] =1—-Pr[B]=1- lim Pr[B,] = lim Pr[4,]. O
n—oo n—o0



