
Discrete Math Recitation #8 Mar 3

These notes are from http://math.cmu.edu/~cocox/teaching/discrete20/rec8.pdf

Suppose that G is a triangle-free graph on n vertices; how many edges can G have? Let’s first try

to build a triangle-free graph with many edges. For integers a, b, the complete bipartite graph, denoted

Ka,b is a bipartite graph with parts A,B where |A| = a, |B| = b and every vertex of A is connected

to every vertex of B. Observe that |E(Ka,b)| = ab and that Ka,b does not have a triangle. Requiring

a+ b = n gives us that |E(Ka,n−a)| = a(n−a) ≤ bn2

4 c with equality if and only if a ∈
{
bn/2c, dn/2e

}
.

It turns out that we can’t do any better than this.

Theorem 1 (Mantel’s theorem). If G is a triangle-free graph on n vertices, then |E(G)| ≤ bn2

4 c with
equality if and only if G = Kbn/2c,dn/2e.

There are many, many proofs of Mantel’s theorem; furthermore, Mantel’s theorem is a special

case of the much more general Turán’s theorem. For the proof that we’ll give today, we need another

graph theory notion. For a graph G, a subset I ⊆ V is called an independent set if there are no edges

between the vertices in I; that is
(
I
2

)
∩ E = ∅. Note that if G is a bipartite graph with parts A,B,

then both A and B are independent sets of G. We denote by α(G) the size of the largest independent

set of G.

Lemma 2. Let G be a triangle-free graph on n vertices with α(G) = α. Then |E(G)| ≤ α
(
n − α

)
with equality if and only if G = Kα,n−α.

Since x(1− x) is maximized when x = 1/2, Lemma 2 immediately implies Mantel’s theorem.

Proof. Let I ⊆ V be an independent set of size α, which we can find since α(G) = α. In particular,

there are no edges inside of I, so every edge of G has at least one vertex in V \ I. Therefore,

|E| ≤
∑
v∈V \I

deg(v). (1)

Now, for a vertex v ∈ V , let N(v) denote the set of neighbors of v; that is N(v) = {u ∈ V :

uv ∈ E}. In particular, deg(v) = |N(v)|. Since G is triangle-free and v has an edge to every vertex

of N(v), it must be the case that N(v) is an independent set. Therefore, deg(v) = |N(v)| ≤ α. We

conclude that

|E| ≤
∑
v∈V \I

deg(v) ≤
∑
v∈V \I

α = α
(
n− α

)
. (2)

We analyze now the case of equality. In (1), we see that equality holds if and only if every edge

has exactly one vertex in V \ I. In other words, equality in (1) holds if and only if G is a bipartite

graph with parts I and V \ I. Lastly, the second inequality in (2) holds with equality if and only

if deg(v) = α for all v ∈ V \ I. Since |I| = α and we already know that G is bipartite with parts

I and V \ I, this means that every vertex of V \ I is connected to every vertex of I. Therefore,

G = K|I|,|V \I| = Kα,n−α.
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