These notes are from http://math.cmu.edu/~cocox/teaching/discrete20/rec8.pdf

Suppose that $G$ is a triangle-free graph on $n$ vertices; how many edges can $G$ have? Let's first try to build a triangle-free graph with many edges. For integers $a, b$, the complete bipartite graph, denoted $K_{a, b}$ is a bipartite graph with parts $A, B$ where $|A|=a,|B|=b$ and every vertex of $A$ is connected to every vertex of $B$. Observe that $\left|E\left(K_{a, b}\right)\right|=a b$ and that $K_{a, b}$ does not have a triangle. Requiring $a+b=n$ gives us that $\left|E\left(K_{a, n-a}\right)\right|=a(n-a) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor$ with equality if and only if $a \in\{\lfloor n / 2\rfloor,\lceil n / 2\rceil\}$.

It turns out that we can't do any better than this.
Theorem 1 (Mantel's theorem). If $G$ is a triangle-free graph on $n$ vertices, then $|E(G)| \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor$ with equality if and only if $G=K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$.

There are many, many proofs of Mantel's theorem; furthermore, Mantel's theorem is a special case of the much more general Turán's theorem. For the proof that we'll give today, we need another graph theory notion. For a graph $G$, a subset $I \subseteq V$ is called an independent set if there are no edges between the vertices in $I$; that is $\binom{I}{2} \cap E=\varnothing$. Note that if $G$ is a bipartite graph with parts $A, B$, then both $A$ and $B$ are independent sets of $G$. We denote by $\alpha(G)$ the size of the largest independent set of $G$.

Lemma 2. Let $G$ be a triangle-free graph on $n$ vertices with $\alpha(G)=\alpha$. Then $|E(G)| \leq \alpha(n-\alpha)$ with equality if and only if $G=K_{\alpha, n-\alpha}$.

Since $x(1-x)$ is maximized when $x=1 / 2$, Lemma 2 immediately implies Mantel's theorem.
Proof. Let $I \subseteq V$ be an independent set of size $\alpha$, which we can find since $\alpha(G)=\alpha$. In particular, there are no edges inside of $I$, so every edge of $G$ has at least one vertex in $V \backslash I$. Therefore,

$$
\begin{equation*}
|E| \leq \sum_{v \in V \backslash I} \operatorname{deg}(v) . \tag{1}
\end{equation*}
$$

Now, for a vertex $v \in V$, let $N(v)$ denote the set of neighbors of $v$; that is $N(v)=\{u \in V$ : $u v \in E\}$. In particular, $\operatorname{deg}(v)=|N(v)|$. Since $G$ is triangle-free and $v$ has an edge to every vertex of $N(v)$, it must be the case that $N(v)$ is an independent set. Therefore, $\operatorname{deg}(v)=|N(v)| \leq \alpha$. We conclude that

$$
\begin{equation*}
|E| \leq \sum_{v \in V \backslash I} \operatorname{deg}(v) \leq \sum_{v \in V \backslash I} \alpha=\alpha(n-\alpha) . \tag{2}
\end{equation*}
$$

We analyze now the case of equality. In (1), we see that equality holds if and only if every edge has exactly one vertex in $V \backslash I$. In other words, equality in (1) holds if and only if $G$ is a bipartite graph with parts $I$ and $V \backslash I$. Lastly, the second inequality in (2) holds with equality if and only if $\operatorname{deg}(v)=\alpha$ for all $v \in V \backslash I$. Since $|I|=\alpha$ and we already know that $G$ is bipartite with parts $I$ and $V \backslash I$, this means that every vertex of $V \backslash I$ is connected to every vertex of $I$. Therefore, $G=K_{|I|,|V \backslash I|}=K_{\alpha, n-\alpha}$.

