These notes are from http://math.cmu.edu/~cocox/teaching/discrete20/rec6.pdf

Recall Euclid's division theorem: For any $n \in \mathbb{N}$ and $k \in \mathbb{N}_{\geq 1}$, there is a unique $q \in \mathbb{N}$ and $r \in\{0, \ldots, a-1\}$ for which $n=k q+r$. Let's prove this using generating functions!

We'll use the following analogy:
We want to form a fruit-basket consisting of n pieces of fruit which can be either apples or oranges. However, we can take apples only in multiples of k, and can have at most $k-1$ oranges. How many ways are there to form such a fruit-basket? Denote this number by $b(n)$.

Observe that a proof that $b(n)=1$ for all $n \in \mathbb{N}$ is equivalent to Euclid's division theorem!
Claim 1. $b(n)=1$ for all $n \in \mathbb{N}$.
Proof. Let $q(n)$ denote the number of ways to make a fruit-basket of size n consisting only of apples and let $r(n)$ denote the number of ways to make a fruit-basket of size n consisting only of oranges. Let

$$
B(z)=\sum_{n \geq 0} b(n) z^{n}, \quad Q(z)=\sum_{n \geq 0} q(n) z^{n}, \quad R(z)=\sum_{n \geq 0} r(n) z^{n},
$$

be the generating functions of each of these sequences, so $B(z)=Q(z) R(z)$. Observe that

$$
\begin{aligned}
& Q(z)=\sum_{n \geq 0} \mathbf{1}[k \mid n] z^{n}=\sum_{n \geq 0} z^{k n}=\frac{1}{1-z^{k}}, \\
& R(z)=\sum_{n \geq 0} \mathbf{1}[n \in\{0,1, \ldots, k-1\}] z^{n}=\sum_{n=0}^{k-1} z^{n}=\frac{1-z^{k}}{1-z} .
\end{aligned}
$$

Therefore, $B(z)=Q(z) R(z)=\frac{1}{1-z^{k}} \frac{1-z^{k}}{1-z}=\frac{1}{1-z}=\sum_{n \geq 0} z^{n}$. We conclude that $b(n)=1$ for all $n \in \mathbb{N}$.

For a positive integer n, the partition number of n, denoted $p(n)$, is the number of ways to write n as the sum of positive integers (where order doesn't matter). In other words, $p(n)$ is the number of ways to distribute n identical balls into n identical bins (some of which may be empty). For example, $p(4)=5$ since the partitions of 4 are $4,1+3,2+2,1+1+2$, and $1+1+1+1$. Additionally, we define $p(0)=1$ for convenience.

Unlike the number of ways to write n as the sum of positive integers where order matters (which is just stars and bars), determining $p(n)$ is generally a difficult task in the sense that there is no "reasonable" formula. However, we can still write down a generating function.

Define $P(z)=\sum_{n \geq 0} p(n) z^{n}$. By thinking about how many times of a given number is used in the partition, we find that

$$
P(z)=\underbrace{\left(1+z+z^{2}+\cdots\right)}_{\text {'s }} \underbrace{\left(1+z^{2}+z^{4}+\cdots\right)}_{\text {''s }} \underbrace{\left(1+z^{3}+z^{6}+\cdots\right)}_{3 \text { 's }} \cdots=\prod_{n \geq 1} \frac{1}{1-z^{n}} .
$$

While this is nice and all, it's not exactly what I want to discuss.

Let $p_{d}(n)$ denote the number of ways to write n as a sum of distinct positive integers (still, order doesn't matter). For example, $p_{d}(4)=2$ since the partitions are 4 and $1+3$. Additionally, let $p_{o}(n)$ denote the number of ways to write n as a sum of odd positive integers. For example, $p_{d}(4)=2$ since the partitions are $1+3$ and $1+1+1+1$. Again, we define $p_{d}(0)=p_{o}(0)=1$ for convenience.

Observe that $p_{d}(4)=p_{o}(4)$; this isn't a coincidence!
Claim 2. For all $n \in \mathbb{N}_{\geq 1}$, we have $p_{d}(n)=p_{o}(n)$.
Proof. There is a bijective proof of this fact (sketched below), but let's prove it by using generating functions. Let $P_{d}(z)=\sum_{n \geq 0} p_{d}(n) z^{n}$ and $P_{o}(z)=\sum_{n \geq 0} p_{o}(n) z^{n}$ be the respective generating functions; we need to show that $P_{d}(z)=P_{o}(z)$.

When considering distinct partitions, we can use each number at most once, so

$$
P_{d}(z)=\underbrace{(1+z)}_{\text {''s }} \underbrace{\left(1+z^{2}\right)}_{\text {2's }} \underbrace{\left(1+z^{3}\right)}_{\text {3's }} \cdots=\prod_{n \geq 1}\left(1+z^{n}\right) .
$$

On the other hand, for odd partitions, we can use only odd numbers, so

$$
P_{o}(z)=\underbrace{\left(1+z+z^{2}+\cdots\right)}_{\text {''s }} \underbrace{\left(1+z^{3}+z^{6}+\cdots\right)}_{\text {3's }} \underbrace{\left(1+z^{5}+z^{10}+\cdots\right)}_{\text {'s }} \cdots=\prod_{n \text { odd }} \frac{1}{1-z^{n}} .
$$

Now that we have an expression for these generating functions, we can calculate

$$
\begin{aligned}
P_{d}(z) & =\prod_{n \geq 1}\left(1+z^{n}\right)=\prod_{n \geq 1} \frac{\left(1+z^{n}\right)\left(1-z^{n}\right)}{\left(1-z^{n}\right)}=\prod_{n \geq 1} \frac{1-z^{2 n}}{1-z^{n}} \\
& =\frac{1-z^{2}}{1-z} \frac{1-z^{4}}{1-z^{2}} \frac{1-z^{6}}{1-z^{3}} \frac{1-z^{4}}{1-z^{5}} \cdots \\
& =\prod_{n \text { odd }} \frac{1}{1-z^{n}}=P_{o}(z)
\end{aligned}
$$

For the curious among you, here's a sketch of a bijective proof (with many details missing). I apologize in advance for my cumbersome notation.

Proof sketch. Consider a partition of n into odd integers:

$$
n=\underbrace{1+\cdots+1}_{\lambda_{1}}+\underbrace{3+\cdots+3}_{\lambda_{3}}+\underbrace{5+\cdots+5}_{\lambda_{5}}+\cdots
$$

Now, consider the binary representation of $\lambda_{i}: \lambda_{i}=2^{\lambda_{i 1}}+2^{\lambda_{i 2}}+\cdots$ where $\lambda_{i 1}, \lambda_{i 2}, \ldots$ are distinct. We can expand

$$
n=\sum_{i \text { odd }} i \cdot \lambda_{i}=\sum_{i \text { odd }} \sum_{j} i \cdot 2^{\lambda_{i j}}
$$

Since every positive integer can be written uniquely as a product of a power of 2 and an odd number, we've written n as a sum of distinct positive integers. Concretely, in the case of $n=4$, this process maps $1+3 \mapsto 1+3$ and $1+1+1+1 \mapsto 4$.

You should check that this process is indeed bijective.

