
Discrete Math Recitation #6 Feb 18

These notes are from http://math.cmu.edu/~cocox/teaching/discrete20/rec6.pdf

Recall Euclid’s division theorem: For any n ∈ N and k ∈ N≥1, there is a unique q ∈ N and

r ∈ {0, . . . , a− 1} for which n = kq + r. Let’s prove this using generating functions!

We’ll use the following analogy:

We want to form a fruit-basket consisting of n pieces of fruit which can be either apples or oranges.

However, we can take apples only in multiples of k, and can have at most k − 1 oranges. How many

ways are there to form such a fruit-basket? Denote this number by b(n).

Observe that a proof that b(n) = 1 for all n ∈ N is equivalent to Euclid’s division theorem!

Claim 1. b(n) = 1 for all n ∈ N.

Proof. Let q(n) denote the number of ways to make a fruit-basket of size n consisting only of apples

and let r(n) denote the number of ways to make a fruit-basket of size n consisting only of oranges.

Let

B(z) =
∑
n≥0

b(n)zn, Q(z) =
∑
n≥0

q(n)zn, R(z) =
∑
n≥0

r(n)zn,

be the generating functions of each of these sequences, so B(z) = Q(z)R(z). Observe that

Q(z) =
∑
n≥0

1[k | n]zn =
∑
n≥0

zkn =
1

1− zk
,

R(z) =
∑
n≥0

1[n ∈ {0, 1, . . . , k − 1}]zn =

k−1∑
n=0

zn =
1− zk

1− z
.

Therefore, B(z) = Q(z)R(z) = 1
1−zk

1−zk
1−z = 1

1−z =
∑

n≥0 z
n. We conclude that b(n) = 1 for all

n ∈ N.

For a positive integer n, the partition number of n, denoted p(n), is the number of ways to write

n as the sum of positive integers (where order doesn’t matter). In other words, p(n) is the number of

ways to distribute n identical balls into n identical bins (some of which may be empty). For example,

p(4) = 5 since the partitions of 4 are 4, 1 + 3, 2 + 2, 1 + 1 + 2, and 1 + 1 + 1 + 1. Additionally, we

define p(0) = 1 for convenience.

Unlike the number of ways to write n as the sum of positive integers where order matters (which

is just stars and bars), determining p(n) is generally a difficult task in the sense that there is no

“reasonable” formula. However, we can still write down a generating function.

Define P (z) =
∑

n≥0 p(n)zn. By thinking about how many times of a given number is used in the

partition, we find that

P (z) = (1 + z + z2 + · · · )︸ ︷︷ ︸
1’s

(1 + z2 + z4 + · · · )︸ ︷︷ ︸
2’s

(1 + z3 + z6 + · · · )︸ ︷︷ ︸
3’s

· · · =
∏
n≥1

1

1− zn
.

While this is nice and all, it’s not exactly what I want to discuss.
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Let pd(n) denote the number of ways to write n as a sum of distinct positive integers (still, order

doesn’t matter). For example, pd(4) = 2 since the partitions are 4 and 1 + 3. Additionally, let po(n)

denote the number of ways to write n as a sum of odd positive integers. For example, pd(4) = 2 since

the partitions are 1 + 3 and 1 + 1 + 1 + 1. Again, we define pd(0) = po(0) = 1 for convenience.

Observe that pd(4) = po(4); this isn’t a coincidence!

Claim 2. For all n ∈ N≥1, we have pd(n) = po(n).

Proof. There is a bijective proof of this fact (sketched below), but let’s prove it by using generat-

ing functions. Let Pd(z) =
∑

n≥0 pd(n)zn and Po(z) =
∑

n≥0 po(n)zn be the respective generating

functions; we need to show that Pd(z) = Po(z).

When considering distinct partitions, we can use each number at most once, so

Pd(z) = (1 + z)︸ ︷︷ ︸
1’s

(1 + z2)︸ ︷︷ ︸
2’s

(1 + z3)︸ ︷︷ ︸
3’s

· · · =
∏
n≥1

(1 + zn).

On the other hand, for odd partitions, we can use only odd numbers, so

Po(z) = (1 + z + z2 + · · · )︸ ︷︷ ︸
1’s

(1 + z3 + z6 + · · · )︸ ︷︷ ︸
3’s

(1 + z5 + z10 + · · · )︸ ︷︷ ︸
5’s

· · · =
∏
n odd

1

1− zn
.

Now that we have an expression for these generating functions, we can calculate

Pd(z) =
∏
n≥1

(1 + zn) =
∏
n≥1

(1 + zn)(1− zn)

(1− zn)
=

∏
n≥1

1− z2n

1− zn

=
����1− z2

1− z
����1− z4
����1− z2

����1− z6

1− z3
����1− z8
����1− z4

����1− z10

1− z5
· · ·

=
∏
n odd

1

1− zn
= Po(z)

For the curious among you, here’s a sketch of a bijective proof (with many details missing). I

apologize in advance for my cumbersome notation.

Proof sketch. Consider a partition of n into odd integers:

n = 1 + · · ·+ 1︸ ︷︷ ︸
λ1

+ 3 + · · ·+ 3︸ ︷︷ ︸
λ3

+ 5 + · · ·+ 5︸ ︷︷ ︸
λ5

+ · · · .

Now, consider the binary representation of λi: λi = 2λi1 + 2λi2 + · · · where λi1, λi2, . . . are distinct.

We can expand

n =
∑
i odd

i · λi =
∑
i odd

∑
j

i · 2λij .

Since every positive integer can be written uniquely as a product of a power of 2 and an odd number,

we’ve written n as a sum of distinct positive integers. Concretely, in the case of n = 4, this process

maps 1 + 3 7→ 1 + 3 and 1 + 1 + 1 + 1 7→ 4.

You should check that this process is indeed bijective.
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