In general, we want to prove some identity $L H S=R H S$ (possibly we only know one side and want to simplify the expression). The "double counting" technique works by finding some set Ω such that $|\Omega|=L H S$ and $|\Omega|=$ RHS. Of course, finding the set Ω is the hard part!

One technique which could be useful in some situations is to look specifically for an Ω which is a relation. Recall that for two sets X, Y, a relation between X and Y is simply a subset of the cartesian product $X \times Y$. In other words, we could try to find some Ω which has the form:

$$
\Omega=\{(x, y) \in X \times Y: \text { some condition on } x \text { and } y\} .
$$

If we can find such an Ω, then there is a natural way to double count: sum over the first coordinate or sum over the second coordinate. Formally,

$$
\begin{aligned}
& |\Omega|=\sum_{x \in X}|\{y \in Y:(x, y) \in \Omega\}|, \\
& |\Omega|=\sum_{y \in Y}|\{x \in X:(x, y) \in \Omega\}| .
\end{aligned}
$$

Of course, not every double counting argument can be accomplished by finding a relation, but it's certainly something you can try. Here are some examples.

Claim 1. For any $n \geq r \in \mathbb{N}$, we have

$$
\sum_{k=r}^{n}\binom{n}{k}\binom{k}{r}=2^{n-r}\binom{n}{r}
$$

Proof. Intuitively. $\binom{n}{k}\binom{k}{r}$ counts the number of ways to pick a k-set from an n-set and then pick an r-set from this k-set. In other words,

$$
\binom{n}{k}\binom{k}{r}=\left|\left\{(A, B) \in\binom{[n]}{k} \times\binom{[n]}{r}: B \subseteq A\right\}\right| .
$$

Since the LHS is a sum over k, a natural candidate for Ω is

$$
\Omega=\left\{(A, B) \in 2^{[n]} \times\binom{[n]}{r}: B \subseteq A\right\},
$$

which is a relation. By summing over the first coordinate, we have

$$
\begin{aligned}
|\Omega| & =\sum_{A \in 2^{[n]}}\left|\left\{B \in\binom{[n]}{r}: B \subseteq A\right\}\right|=\sum_{A \in 2^{[n]}}\binom{|A|}{r} \\
& =\sum_{k=0}^{n} \sum_{A \in\binom{[n]}{k}}\binom{k}{r}=\sum_{k=0}^{n}\binom{n}{k}\binom{k}{r}=\sum_{k=r}^{n}\binom{n}{k}\binom{k}{r} .
\end{aligned}
$$

By summing over the second coordinate, we have

$$
\begin{aligned}
|\Omega| & =\sum_{B \in\binom{[n]}{r}}\left|\left\{A \in 2^{[n]}: B \subseteq A\right\}\right|=\sum_{B \in\binom{[n]}{r}}\left|2^{[n] \backslash B}\right| \\
& =\sum_{B \in\binom{[n]}{r}} 2^{n-r}=2^{n-r}\binom{n}{r} .
\end{aligned}
$$

Claim 2. For $n \in \mathbb{N}_{\geq 1}$, let $d(n)$ denote the number of divisors of n (including 1 and n). Then for any $n \in \mathbb{N}_{\geq 1}$,

$$
\sum_{k=1}^{n} d(k)=\sum_{k=1}^{n}\left\lfloor\frac{n}{k}\right\rfloor .
$$

Proof. Observe that $d(k)=\left|\left\{i \in \mathbb{N}_{\geq 1}: i \mid k\right\}\right|$. Since we're summing over all $k \in[n]$, a natural candidate for Ω is

$$
\Omega=\left\{(i, k) \in \mathbb{N}_{\geq 1} \times[n]: i \mid k\right\}
$$

which is a relation. By partitioning based on the second coordinate, we have

$$
|\Omega|=\sum_{k \in[n]}\left|\left\{i \in \mathbb{N}_{\geq 1}: i \mid k\right\}\right|=\sum_{k \in[n]} d(k)=\sum_{k=1}^{n} d(k)
$$

By partitioning based on the first coordinate, we have

$$
\begin{aligned}
|\Omega| & =\sum_{i \in \mathbb{N}_{\geq 1}}|\{k \in[n]: i \mid k\}|=\sum_{i \in \mathbb{N} \geq 1}\left|\left\{\ell \in \mathbb{N}_{\geq 1}: i \cdot \ell \in[n]\right\}\right| \\
& =\sum_{i \in \mathbb{N}_{\geq 1}} \max \{\ell \in \mathbb{N}: i \cdot \ell \leq n\}=\sum_{i \in \mathbb{N}_{\geq 1}}\left\lfloor\frac{n}{i}\right\rfloor=\sum_{i=1}^{n}\left\lfloor\frac{n}{i}\right\rfloor .
\end{aligned}
$$

Using some facts that we'll prove later in the class, this implies that the average number of divisors of the integers in $[n]$ is approximately $\log n$.

For the next problem, recall that a permutation of $[n]$ is simply a bijection $\pi:[n] \rightarrow[n]$. The set of all permutations of $[n]$ is denoted by S_{n} (S is used since this is called the symmetric group on n elements). A fixed point of π is an element $x \in[n]$ for which $\pi(x)=x$.
Claim 3. For $n \in \mathbb{N}_{\geq 1}$ and $k \in[n]$, let $p_{n}(k)$ denote the number of permutations of $[n]$ which have exactly k fixed points. Then

$$
\sum_{k=0}^{n} k \cdot p_{n}(k)=n!
$$

Proof. Of course, a natural candidate to double count is S_{n} since clearly $\left|S_{n}\right|=n!$. For the LHS, it would then be natural to partition S_{n} based on the number of fixed points. Unfortunately, this would lead only to the identity $n!=\sum_{k=0}^{n} p_{n}(k)$, which is not what we're looking for...

Instead, let's try to find a natural candidate for Ω by looking at the LHS. For ease of notation, let $S_{n}(k)$ denote the set of permutations of $[n]$ which have exactly k fixed points, so that $\left|S_{n}(k)\right|=p_{n}(k)$. Intuitively,

$$
k \cdot p_{n}(k)=\left|\left\{(\pi, x) \in S_{n}(k) \times[n]: \pi(x)=x\right\}\right|
$$

Thus, a natural candidate for Ω is

$$
\Omega=\left\{(\pi, x) \in S_{n} \times[n]: \pi(x)=x\right\}
$$

which is a relation. By partitioning based on the first coordinate, we have

$$
\begin{aligned}
|\Omega| & =\sum_{\pi \in S_{n}}|\{x \in[n]: \pi(x)=x\}|=\sum_{\pi \in S_{n}}(\# \text { fixed points of } \pi) \\
& =\sum_{k=0}^{n} \sum_{\pi \in S_{n}(k)} k=\sum_{k=0}^{n} k\left|S_{n}(k)\right|=\sum_{k=0}^{n} k \cdot p_{n}(k)
\end{aligned}
$$

By partitioning based on the second coordinate, we have

$$
\begin{aligned}
|\Omega| & =\sum_{x \in[n]}\left|\left\{\pi \in S_{n}: \pi(x)=x\right\}\right|=\sum_{x \in[n]}(\# \text { permutations of }[n] \backslash\{x\}) \\
& =\sum_{x \in[n]}(n-1)!=n \cdot(n-1)!=n!
\end{aligned}
$$

Later in the class, we'll prove the nice fact that $p_{n}(0)=\left\lfloor\frac{n!}{e}+\frac{1}{2}\right\rfloor$ where e is the base of the natural logarithm. Permutations with no fixed points are called derangements.

