Discrete Math Recitation #2 Jan 21

These notes are from http://math.cmu.edu/~cocox/teaching/discrete20/rec2.pdf

In general, we want to prove some identity LHS = RHS (possibly we only know one side and
want to simplify the expression). The “double counting” technique works by finding some set € such
that |2 = LHS and || = RHS. Of course, finding the set € is the hard part!

One technique which could be useful in some situations is to look specifically for an 2 which is a
relation. Recall that for two sets X, Y, a relation between X and Y is simply a subset of the cartesian
product X x Y. In other words, we could try to find some Q which has the form:

Q= {(z,y) € X XY : some condition on z and y}.

If we can find such an 2, then there is a natural way to double count: sum over the first coordinate
or sum over the second coordinate. Formally,

Q=) HyeY:(x,y) €}

zeX

Q=) HreX:(z,y) €}

yey

Of course, not every double counting argument can be accomplished by finding a relation, but it’s
certainly something you can try. Here are some examples.

Claim 1. For any n > r € N, we have

> ()()==()

Proof. Intuitively. (Z) (ﬁ) counts the number of ways to pick a k-set from an n-set and then pick an
r-set from this k-set. In other words,

() fwme ()= (2) s

Since the LHS is a sum over k, a natural candidate for €2 is

0= {(A,B) e 2l x C:]) B C A},

which is a relation. By summing over the first coordinate, we have

=3 {m(“ﬁ) :BQA}': Z}(‘f')

2= (-500-200)
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By summing over the second coordinate, we have

o= Y |{Ae2:Bc A} = Y |25

e () se(?)

n—r __ n—r n
= Z 2N = 9 <T> O

Be (M)

r

Claim 2. For n € N>q, let d(n) denote the number of divisors of n (including 1 and n). Then for

any n € N>q,
n n n
ak) = Y| 7).
> dk) =3 |7
k=1 k=1
Proof. Observe that d(k) = |[{i € N>; : ¢ | k}|. Since we’re summing over all k& € [n], a natural

candidate for Q is
Q= {(Z,k) €N21 X [n] ) | k},

which is a relation. By partitioning based on the second coordinate, we have
n
0= S [ieNay i [k} = 3 d(k) = > d(k).
keln] ke(n] k=1

By partitioning based on the first coordinate, we have

Q= > Hkeml:ilk}= ) H{leNsi:i-Le[n]}

1€N> 1€N>,
:Zmax{ﬂENii‘fﬁn}:ZV?JZZH:V'LJ' .
i€N>q €Nz =1

Using some facts that we’ll prove later in the class, this implies that the average number of divisors
of the integers in [n] is approximately log n.

For the next problem, recall that a permutation of [n] is simply a bijection 7: [n] — [n]. The set
of all permutations of [n] is denoted by S, (S is used since this is called the symmetric group on n
elements). A fized point of 7 is an element = € [n] for which 7(z) = z.

Claim 3. Forn € N>j and k € [n], let p,(k) denote the number of permutations of [n] which have
exactly k fixzed points. Then

> k- pa(k) =nl.
k=0

Proof. Of course, a natural candidate to double count is S, since clearly |S,| = n!. For the LHS, it
would then be natural to partition 5, based on the number of fixed points. Unfortunately, this would
lead only to the identity n! =, pn(k), which is not what we’re looking for...

Instead, let’s try to find a natural candidate for €2 by looking at the LHS. For ease of notation, let
Sn(k) denote the set of permutations of [n] which have exactly k fixed points, so that |Sy, (k)| = pn (k).
Intuitively,

k-pn(k) = |{(m,2) € Sn(k) x [n] : 7(z) = }|.
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Thus, a natural candidate for €2 is
Q={(mx) €S, x[n]:n(z)=2a},
which is a relation. By partitioning based on the first coordinate, we have

Q] = Z Hz €n]:m(x) =2a} = Z (# fixed points of 7)

TESH TESH
=> > k=) KSuk)l =" k-palk).
k=0 7€S, (k) k=0 k=0

By partitioning based on the second coordinate, we have

Q| = Z Hm e Sy :m(x) =z} = Z (# permutations of [n] \ {z})

z€[n] z€[n]
=Y (n-D=n-(n—1)=nl O
z€[n]

Later in the class, we’ll prove the nice fact that p,(0) = L%‘ + %J where e is the base of the natural

logarithm. Permutations with no fixed points are called derangements.



