
Discrete Math Recitation #2 Jan 21

These notes are from http://math.cmu.edu/~cocox/teaching/discrete20/rec2.pdf

In general, we want to prove some identity LHS = RHS (possibly we only know one side and

want to simplify the expression). The “double counting” technique works by finding some set Ω such

that |Ω| = LHS and |Ω| = RHS. Of course, finding the set Ω is the hard part!

One technique which could be useful in some situations is to look specifically for an Ω which is a

relation. Recall that for two sets X,Y , a relation between X and Y is simply a subset of the cartesian

product X × Y . In other words, we could try to find some Ω which has the form:

Ω =
{

(x, y) ∈ X × Y : some condition on x and y
}
.

If we can find such an Ω, then there is a natural way to double count: sum over the first coordinate

or sum over the second coordinate. Formally,

|Ω| =
∑
x∈X
|{y ∈ Y : (x, y) ∈ Ω}|,

|Ω| =
∑
y∈Y
|{x ∈ X : (x, y) ∈ Ω}|.

Of course, not every double counting argument can be accomplished by finding a relation, but it’s

certainly something you can try. Here are some examples.

Claim 1. For any n ≥ r ∈ N, we have

n∑
k=r

(
n

k

)(
k

r

)
= 2n−r

(
n

r

)
.

Proof. Intuitively.
(
n
k

)(
k
r

)
counts the number of ways to pick a k-set from an n-set and then pick an

r-set from this k-set. In other words,(
n

k

)(
k

r

)
=

∣∣∣∣{(A,B) ∈
(

[n]

k

)
×
(

[n]

r

)
: B ⊆ A

}∣∣∣∣.
Since the LHS is a sum over k, a natural candidate for Ω is

Ω =

{
(A,B) ∈ 2[n] ×

(
[n]

r

)
: B ⊆ A

}
,

which is a relation. By summing over the first coordinate, we have

|Ω| =
∑
A∈2[n]

∣∣∣∣{B ∈ ([n]

r

)
: B ⊆ A

}∣∣∣∣ =
∑
A∈2[n]

(
|A|
r

)

=
n∑
k=0

∑
A∈([n]

k )

(
k

r

)
=

n∑
k=0

(
n

k

)(
k

r

)
=

n∑
k=r

(
n

k

)(
k

r

)
.
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By summing over the second coordinate, we have

|Ω| =
∑

B∈([n]
r )

∣∣{A ∈ 2[n] : B ⊆ A
}∣∣ =

∑
B∈([n]

r )

∣∣2[n]\B∣∣
=

∑
B∈([n]

r )

2n−r = 2n−r
(
n

r

)
.

Claim 2. For n ∈ N≥1, let d(n) denote the number of divisors of n (including 1 and n). Then for

any n ∈ N≥1,
n∑
k=1

d(k) =
n∑
k=1

⌊n
k

⌋
.

Proof. Observe that d(k) = |{i ∈ N≥1 : i | k}|. Since we’re summing over all k ∈ [n], a natural

candidate for Ω is

Ω =
{

(i, k) ∈ N≥1 × [n] : i | k
}
,

which is a relation. By partitioning based on the second coordinate, we have

|Ω| =
∑
k∈[n]

|{i ∈ N≥1 : i | k}| =
∑
k∈[n]

d(k) =
n∑
k=1

d(k).

By partitioning based on the first coordinate, we have

|Ω| =
∑
i∈N≥1

|{k ∈ [n] : i | k}| =
∑
i∈N≥1

|{` ∈ N≥1 : i · ` ∈ [n]}|

=
∑
i∈N≥1

max{` ∈ N : i · ` ≤ n} =
∑
i∈N≥1

⌊n
i

⌋
=

n∑
i=1

⌊n
i

⌋
.

Using some facts that we’ll prove later in the class, this implies that the average number of divisors

of the integers in [n] is approximately log n.

For the next problem, recall that a permutation of [n] is simply a bijection π : [n]→ [n]. The set

of all permutations of [n] is denoted by Sn (S is used since this is called the symmetric group on n

elements). A fixed point of π is an element x ∈ [n] for which π(x) = x.

Claim 3. For n ∈ N≥1 and k ∈ [n], let pn(k) denote the number of permutations of [n] which have

exactly k fixed points. Then
n∑
k=0

k · pn(k) = n!.

Proof. Of course, a natural candidate to double count is Sn since clearly |Sn| = n!. For the LHS, it

would then be natural to partition Sn based on the number of fixed points. Unfortunately, this would

lead only to the identity n! =
∑n

k=0 pn(k), which is not what we’re looking for...

Instead, let’s try to find a natural candidate for Ω by looking at the LHS. For ease of notation, let

Sn(k) denote the set of permutations of [n] which have exactly k fixed points, so that |Sn(k)| = pn(k).

Intuitively,

k · pn(k) =
∣∣{(π, x) ∈ Sn(k)× [n] : π(x) = x

}∣∣.
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Thus, a natural candidate for Ω is

Ω =
{

(π, x) ∈ Sn × [n] : π(x) = x
}
,

which is a relation. By partitioning based on the first coordinate, we have

|Ω| =
∑
π∈Sn

|{x ∈ [n] : π(x) = x}| =
∑
π∈Sn

(# fixed points of π)

=
n∑
k=0

∑
π∈Sn(k)

k =
n∑
k=0

k|Sn(k)| =
n∑
k=0

k · pn(k).

By partitioning based on the second coordinate, we have

|Ω| =
∑
x∈[n]

|{π ∈ Sn : π(x) = x}| =
∑
x∈[n]

(# permutations of [n] \ {x})

=
∑
x∈[n]

(n− 1)! = n · (n− 1)! = n!.

Later in the class, we’ll prove the nice fact that pn(0) =
⌊
n!
e + 1

2

⌋
where e is the base of the natural

logarithm. Permutations with no fixed points are called derangements.
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