Let G be a graph and let $\chi: E \rightarrow\{0,1\}$ be a 2-coloring of the edges of G. In this coloring, we can define $\operatorname{deg}_{i}^{\chi}(v)=|\{u \in V: \chi(u v)=i\}|$ for $i \in\{0,1\}$; that is, $\operatorname{deg}_{i}^{\chi}(v)$ is the number of edges of color i incident to v in the coloring χ. For $\chi: E \rightarrow\{0,1\}$, we define the discrepancy of χ to be

$$
\operatorname{disc}(G, \chi) \stackrel{\text { def }}{=} \max _{v \in V}\left|\operatorname{deg}_{0}^{\chi}(v)-\operatorname{deg}_{1}^{\chi}(v)\right| .
$$

Of course, for any graph G and 2-coloring χ, we have $\operatorname{disc}(G, \chi) \leq \Delta(G)$, which is tight when χ gives every edge the same color. So the interesting question is to try to minimize the discrepancy; hence, define

$$
\operatorname{disc}(G) \stackrel{\text { def }}{=} \min _{\chi: E \rightarrow\{0,1\}} \operatorname{disc}(G, \chi) .
$$

Observe that if G has a vertex of odd degree, then $\operatorname{disc}(G) \geq 1$. Moreover, observe that if G is a cycle with an odd number of vertices, then no matter how the edges are 2 -colored, there must be some vertex incident to edges of only a single color, $\operatorname{so} \operatorname{disc}(G)=2$. It turns out that an odd cycle is a worst-case scenario (see the exercise below for a classification of all worst-case scenarios).
Claim 1. For any graph $G, \operatorname{disc}(G) \leq 2$.
Proof. We will complete the proof in a couple steps.
Step 1: G is connected and $\operatorname{deg}(v)$ is even for every $v \in V$. Here we prove something slightly stronger: For any fixed $v \in V$, there is a coloring $\chi: E \rightarrow\{0,1\}$ such that $\left|\operatorname{deg}_{0}^{\chi}(v)-\operatorname{deg}_{1}^{\chi}(v)\right| \leq 2$ and $\operatorname{deg}_{0}^{\chi}(u)=\operatorname{deg}_{1}^{\chi}(u)$ for all $u \neq v$.

Since G is connected and every vertex has even degree, we know that G has an Eulerian walk. We may suppose that this walk starts at v : label the edges $e_{1}, e_{2}, \ldots, e_{m}$ in the order they're traversed and define $\chi\left(e_{i}\right)=i \bmod 2$. Consider any vertex $u \neq v$. Observe that if $u \in e_{i}$, then either $u \in e_{i-1}$ or $u \in e_{i+1}$ (but not both). Hence, we can pair up edges of opposite color incident to u, implying that $\operatorname{deg}_{0}^{\chi}(u)=\operatorname{deg}_{1}^{\chi}(u)$. The same logic almost works for v, except for the fact that e_{1}, e_{m} are paired up and these edges may have the same color. Hence, we have $\operatorname{deg}_{0}^{\chi}(v)=\operatorname{deg}_{1}^{\chi}(v)$ if m is even and $\operatorname{deg}_{1}^{\chi}(v)=\operatorname{deg}_{0}^{\chi}(v)+2$ if m is odd. ${ }^{1}$
Step 2: G is connected and some vertex has odd degree. Let $U \subseteq V$ denote the set of vertices of G with odd degree. We build a new graph G^{\prime} from G by adding a new vertex which is connected to each vertex of U. Formally, $V\left(G^{\prime}\right)=V \cup\left\{v^{\prime}\right\}$ and $E\left(G^{\prime}\right)=E \cup\left\{\left\{v^{\prime}, u\right\}: u \in U\right\}$. The handshaking lemma tells us that $|U|$ is even, so since $|U| \geq 1$ by assumption, we know that G^{\prime} is connected and every vertex of G^{\prime} has even degree.

By step 1, we may find a coloring $\chi^{\prime}: E\left(G^{\prime}\right) \rightarrow\{0,1\}$ such that $\left|\operatorname{deg}_{0}^{\chi^{\prime}}\left(v^{\prime}\right)-\operatorname{deg}_{1}^{\chi^{\prime}}\left(v^{\prime}\right)\right| \leq 2$ and $\operatorname{deg}_{0}^{\chi^{\prime}}(v)=\operatorname{deg}_{1}^{\chi^{\prime}}(v)$ for all $v \in V\left(G^{\prime}\right) \backslash\left\{v^{\prime}\right\}=V$. Thus, by deleting v^{\prime} and its incident edges, we are left with a coloring $\chi: E \rightarrow\{0,1\}$ for which $\left|\operatorname{deg}_{0}^{\chi}(v)-\operatorname{deg}_{1}^{\chi}(v)\right| \leq 1$ for all $v \in V .{ }^{2}$

[^0]Step 3: G is arbitrary. We can decompose G into $G=G_{1} \cup G_{2} \cup \cdots \cup G_{k}$ where the G_{i} 's are vertex disjoint and each G_{i} is connected. Observe that since the G_{i} 's are vertex disjoint, $\operatorname{disc}(G)=$ $\max _{i \in[k]} \operatorname{disc}\left(G_{i}\right)$. Putting together steps 1 and 2 , since each G_{i} is connected, $\operatorname{disc}\left(G_{i}\right) \leq 2$, and so $\operatorname{disc}(G) \leq 2$ as well.

Exercise. Let G be a connected graph. Show that $\operatorname{disc}(G)=2$ if and only if G has an odd number of edges and every vertex has even degree.

Exercise. Let G be a connected graph and suppose that $\chi: E \rightarrow\{0,1\}$ is any 2-coloring for which $\operatorname{disc}(G, \chi)=0$. Show that G has an Eulerian walk e_{1}, \ldots, e_{m} such that $\chi\left(e_{i}\right)=i \bmod 2$.

[^0]: ${ }^{1}$ Observe that we've proved something more than claimed here: If G is a connected graph with an even number of edges and every vertex has even degree, then $\operatorname{disc}(G)=0$.
 ${ }^{2}$ Observe that we've proved something more than claimed here: If G is a connected graph with at least one vertex of odd degree, then $\operatorname{disc}(G)=1$.

