Recitation #11

These notes are from http://math.cmu.edu/~cocox/teaching/discrete20/rec11.pdf

In HW7(5), you were asked to show that if G is a graph with m edges, then G contains a bipartite graph with at least m/2 edges. Let's extend this result.

Claim 1. Let G_1, \ldots, G_k be graphs on a common vertex set V, each with m edges. There is a partition of $V = A \sqcup B$ so that for each i, G_i has at least $\frac{m}{2} - \sqrt{km}$ edges between A and B.

As a remark, each G_i has a biparition with at least $\frac{m}{2}$ crossing edges, but this bipartition need not be the same for each G_i . This result says that we can use the same bipartition for each graph if we're willing to give up just a little bit.

Proof. Independently for each $v \in V$, include v in A with probability 1/2 and otherwise include v in B. This creates a random bipartition $V = A \sqcup B$.

Let G = (V, E) be any graph with m edges. Let X be the random variable which counts the number of edges of G with one vertex in A and the other in B. Of course, $X = \sum_{e \in E} X_e$ where X_e is the indicator random variable of the event that edge e crosses between A and B.

In HW7(5), you verified that $\mathbb{E} X_e = \mathbf{Pr}[e \text{ crosses}] = \frac{1}{2}$, and so $\mathbb{E} X = \frac{m}{2}$. We now compute **Var** X. For any $e, s \in E$, we find that

$$\mathbb{E} X_e X_s = \mathbf{Pr}[e \text{ and } s \text{ crosss}] = \mathbf{Pr}[e \text{ crosses} \mid s \text{ crosses}] \mathbf{Pr}[s \text{ crosses}]$$
$$= \begin{cases} \frac{1}{2} & \text{if } e = s, \\ \frac{1}{4} & \text{if } e \neq s. \end{cases}$$

Now, a bit of algebraic manipulation yields (do this for yourself!)

$$\operatorname{Var} X = \sum_{e,s \in E} \left(\mathbb{E} \, X_e X_s - \mathbb{E} \, X_e \, \mathbb{E} \, X_s \right) = \sum_{e \in E} \left(\frac{1}{2} - \frac{1}{4} \right) + \sum_{e \neq s \in E} \left(\frac{1}{4} - \frac{1}{4} \right) = \frac{m}{4}.$$

For each $i \in [k]$, let X_i denote the number of crossing edges of G_i , so since G_i has vertex set Vand has m edges, the facts derived above for X hold also for X_i , i.e. $\mathbb{E} X_i = \frac{m}{2}$ and $\operatorname{Var} X_i = \frac{m}{4}$. We now combine the above results with the union bound and Chebyshev's inequality to prove the claim. Observe that

$$\mathbf{Pr}\left[\bigcup_{i\in[k]} \left\{ X_i \le \frac{m}{2} - \sqrt{km} \right\} \right] \le \sum_{i=1}^k \mathbf{Pr}\left[X_i - \frac{m}{2} \le -\sqrt{km} \right]$$
$$\le \sum_{i=1}^k \mathbf{Pr}\left[|X_i - \mathbb{E}X_i| \ge \sqrt{km} \right]$$
$$\le \sum_{i=1}^k \frac{\mathbf{Var}X_i}{km} = \frac{1}{4} < 1.$$

Thus, there is a positive probability that the random bipartition works for all G_i , implying that there is such a bipartition.