These notes are from http://math.cmu.edu/~cocox/teaching/discrete20/rec11.pdf

In HW7(5), you were asked to show that if G is a graph with m edges, then G contains a bipartite graph with at least $m / 2$ edges. Let's extend this result.

Claim 1. Let G_{1}, \ldots, G_{k} be graphs on a common vertex set V, each with m edges. There is a partition of $V=A \sqcup B$ so that for each i, G_{i} has at least $\frac{m}{2}-\sqrt{k m}$ edges between A and B.

As a remark, each G_{i} has a biparition with at least $\frac{m}{2}$ crossing edges, but this bipartition need not be the same for each G_{i}. This result says that we can use the same bipartition for each graph if we're willing to give up just a little bit.

Proof. Independently for each $v \in V$, include v in A with probability $1 / 2$ and otherwise include v in B. This creates a random bipartition $V=A \sqcup B$.

Let $G=(V, E)$ be any graph with m edges. Let X be the random variable which counts the number of edges of G with one vertex in A and the other in B. Of course, $X=\sum_{e \in E} X_{e}$ where X_{e} is the indicator random variable of the event that edge e crosses between A and B.

In $\operatorname{HW7}(5)$, you verified that $\mathbb{E} X_{e}=\operatorname{Pr}[e$ crosses $]=\frac{1}{2}$, and so $\mathbb{E} X=\frac{m}{2}$. We now compute $\operatorname{Var} X$. For any $e, s \in E$, we find that

$$
\begin{aligned}
\mathbb{E} X_{e} X_{s} & =\operatorname{Pr}[e \text { and } s \text { cross }]=\operatorname{Pr}[e \text { crosses } \mid s \text { crosses }] \operatorname{Pr}[s \text { crosses }] \\
& = \begin{cases}\frac{1}{2} & \text { if } e=s, \\
\frac{1}{4} & \text { if } e \neq s .\end{cases}
\end{aligned}
$$

Now, a bit of algebraic manipulation yields (do this for yourself!)

$$
\operatorname{Var} X=\sum_{e, s \in E}\left(\mathbb{E} X_{e} X_{s}-\mathbb{E} X_{e} \mathbb{E} X_{s}\right)=\sum_{e \in E}\left(\frac{1}{2}-\frac{1}{4}\right)+\sum_{e \neq s \in E}\left(\frac{1}{4}-\frac{1}{4}\right)=\frac{m}{4} .
$$

For each $i \in[k]$, let X_{i} denote the number of crossing edges of G_{i}, so since G_{i} has vertex set V and has m edges, the facts derived above for X hold also for X_{i}, i.e. $\mathbb{E} X_{i}=\frac{m}{2}$ and $\operatorname{Var} X_{i}=\frac{m}{4}$. We now combine the above results with the union bound and Chebyshev's inequality to prove the claim. Observe that

$$
\begin{aligned}
\operatorname{Pr}\left[\bigcup_{i \in[k]}\left\{X_{i} \leq \frac{m}{2}-\sqrt{k m}\right\}\right] & \leq \sum_{i=1}^{k} \operatorname{Pr}\left[X_{i}-\frac{m}{2} \leq-\sqrt{k m}\right] \\
& \leq \sum_{i=1}^{k} \operatorname{Pr}\left[\left|X_{i}-\mathbb{E} X_{i}\right| \geq \sqrt{k m}\right] \\
& \leq \sum_{i=1}^{k} \frac{\operatorname{Var} X_{i}}{k m}=\frac{1}{4}<1 .
\end{aligned}
$$

Thus, there is a positive probability that the random bipartition works for all G_{i}, implying that there is such a bipartition.

