These notes are from http://math.cmu.edu/~cocox/teaching/discrete20/rec1.pdf

For non-negative integers n, k, define the set

$$
A(n, k):=\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{N}^{k}: x_{1}+\cdots+x_{k}=n\right\}
$$

Claim 1. The number of ways to color n indistinguishable balls using k distinct colors (not every color must be used) is precisely $|A(n, k)|$.

Proof. Denote by $C(n, k)$ the set of all k-colorings of n indistinguishable balls. We show that $|C(n, k)|=|A(n, k)|$ by finding a bijection $f: C(n, k) \rightarrow A(n, k)$.

Fix $c \in C(n, k)$ and for $i \in[k]$, let c_{i} denote the number of balls of color i in c. Observe that $c_{i} \in \mathbb{N}$ for all i and that $c_{1}+\cdots+c_{k}=n$ since there are n balls in total, each of which has a color. Thus, define $f(c)=\left(c_{1}, \ldots, c_{n}\right)$. By the observation, f is indeed a map from $C(n, k)$ to $A(n, k)$; we must show it is both injective and surjective.

Surjective: Consider any $\left(x_{1}, \ldots, x_{k}\right) \in A(n, k)$; we must find some coloring $c \in C(n, k)$ for which $f(c)=\left(x_{1}, \ldots, x_{k}\right)$. Consider an arbitrary ordering of the n balls. Define c by coloring the first x_{1} balls with color 1 , the next x_{2} balls with color 2 , etc. Since $x_{i} \in \mathbb{N}$ and $x_{1}+\cdots+x_{k}=n$, this is a valid coloring, and $f(c)=\left(x_{1}, \ldots, x_{n}\right)$.

Injective: Consider any $c \neq c^{\prime} \in C(n, k)$; we must show that $f(c) \neq f\left(c^{\prime}\right)$. Since $c \neq c^{\prime}$ and the balls are indistinguishable, there must be some color $i \in[k]$ for which $c_{i} \neq c_{i}^{\prime}$; hence $\left(c_{1}, \ldots, c_{k}\right) \neq$ $\left(c_{1}^{\prime}, \ldots, c_{k}^{\prime}\right)$ and so $f(c) \neq f\left(c^{\prime}\right)$.

So, how big is $A(n, k)$?
Claim 2. $|A(n, k)|=\binom{n+k-1}{k-1}=\binom{n+k-1}{n}$.
Proof. We will prove this through what is known as the "stars and bars" argument. Let $B(n, k)$ denote the set of all ways to arrange n indistinguishable stars $(*)$ and $k-1$ indistinguishable bars (|) in a row. For instance, with $n=k=5,||* *| *| * *$ is an element of $B(n, k)$. Observe that we can think of $B(n, k)$ in the following way: there are $n+k-1$ empty slots, each of which can be filled with either a $*$ or a \mid. Since an element of $B(n, k)$ is determined uniquely by the positions of the bars (since then every other slot must then contain a $*$), we have $|B(n, k)|=\binom{n+k-1}{k-1}$ since there are precisely this many ways to place $k-1$ bars into $n+k-1$ slots. Equivalently, an element of $B(n, k)$ is determined uniquely by the positions of the stars, so $|B(n, k)|=\binom{n+k-1}{n}$ by the same reasoning.

Thus, it suffices to establish a bijection $f: A(n, k) \rightarrow B(n, k)$. For $\left(x_{1}, \ldots, x_{k}\right) \in A(n, k)$, we form an arrangement of stars and bars by first filling the first x_{1} slots with stars and place a bar, then fill the next x_{2} slots with stars and place a bar, etc. This continues until we finally place x_{k} stars, but we do not place a bar after them. Let $f\left(x_{1}, \ldots, x_{k}\right)$ denote this arrangement; for example, $f(0,3,0,0,1)=|* * *|| | *$.

Since $x_{1}+\cdots+x_{k}=n$, we have placed n stars and $k-1$ bars, we have $f\left(x_{1}, \ldots, x_{k}\right) \in B(n, k)$. We must show now that f is a bijection.

Surjective: Consider an arrangement b of stars and bars in $B(n, k)$; we must find some $\left(x_{1}, \ldots, x_{k}\right) \in$ $A(n, k)$ for which $f\left(x_{1}, \ldots, x_{k}\right)=b$. Let x_{1} denote the number of stars which appear before the first bar (which may be 0), let x_{k} denote the number of stars which appear after the last bar, and for all other i, let x_{i} denote the number of stars which appear between the $(i-1)$ st bar and the i th bar. Since there are $k-1$ bars, each of these numbers are well-defined and are non-negative integers. Furthermore, since there are n stars in total, $x_{1}+\cdots+x_{k}=n$, so $\left(x_{1}, \ldots, x_{k}\right) \in A(n, k)$. Finally, by construction, $f\left(x_{1}, \ldots, x_{k}\right)=b$.

Injective: Suppose that $\left(x_{1}, \ldots, x_{k}\right),\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right) \in A(n, k)$ have $f\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$; we must show that $x_{i}=x_{i}^{\prime}$ for all $i \in[k]$. By construction, the arrangement $f\left(x_{1}, \ldots, x_{k}\right)$ has x_{1} stars before the first bar, x_{k} stars after the last bar, and x_{i} stars between the $(i-1)$ st and i th bars for all other i. Similarly, $f\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$ has x_{1}^{\prime} stars before the first bar, x_{k}^{\prime} stars after the last bar, and x_{i}^{\prime} stars between the $(i-1)$ st and i th bars for all other i. We conclude that $x_{i}=x_{i}^{\prime}$ for all $i \in[k]$.

For non-negative integers n, k, define the set

$$
A^{\prime}(n, k):=\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{N}^{k}: x_{1}+\cdots+x_{k}=n, x_{i} \geq 1\right\} .
$$

Following the same ideas as in Claim 1, we see that $\left|A^{\prime}(n, k)\right|$ is precisely the number of ways to color n indistinguishable balls using k distinct colors so that each color is used at least once. So, how big is $A^{\prime}(n, k)$?

Claim 3. $\left|A^{\prime}(n, k)\right|=|A(n-k, k)|=\binom{n-1}{k-1}$.
Proof. We already know that $|A(n-k, k)|=\binom{n-1}{k-1}$ through Claim 1, so it is enough to show that $\left|A^{\prime}(n, k)\right|=|A(n-k, k)|$, which we will do by finding a bijection $f: A^{\prime}(n, k) \rightarrow A(n-k, k)$. For $\left(x_{1}, \ldots, x_{k}\right) \in A^{\prime}(n, k)$, define

$$
f\left(x_{1}, \ldots, x_{k}\right)=\left(x_{1}-1, \ldots, x_{k}-1\right) .
$$

Since each x_{i} is a positive integer, $x_{i}-1$ is a non-negative integer and $\left(x_{1}-1\right)+\cdots+\left(x_{k}-1\right)=$ $\left(x_{1}+\cdots+x_{k}\right)-k=n-k$; hence f is indeed a map from $A^{\prime}(n, k)$ to $A(n-k, k)$. We must show that f is bijective.

Surjective: Consider $\left(y_{1}, \ldots, y_{k}\right) \in A(n-k, k)$; we must find $\left(x_{1}, \ldots, x_{k}\right) \in A^{\prime}(n, k)$ with $f\left(x_{1}, \ldots, x_{k}\right)=$ $\left(y_{1}, \ldots, y_{k}\right)$. Consider $x_{i}=y_{i}+1$; certainly $x_{i} \in \mathbb{N}_{\geq 1}$ since $y_{i} \in \mathbb{N}$ and $x_{1}+\cdots+x_{k}=\left(y_{1}+1\right)+\cdots+\left(y_{k}+\right.$ $1)=n-k+k=n$, so $\left(x_{1}, \ldots, x_{k}\right) \in A^{\prime}(n, k)$. Furthermore, by definition, $f\left(x_{1}, \ldots, x_{k}\right)=\left(y_{1}, \ldots, y_{k}\right)$.

Injective: Suppose that $\left(x_{1}, \ldots, x_{k}\right),\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right) \in A^{\prime}(n, k)$ have $f\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$. Thus, $\left(x_{1}-1, \ldots, x_{k}-1\right)=\left(x_{1}^{\prime}-1, \ldots, x_{k}^{\prime}-1\right)$ and so $\left(x_{1}, \ldots, x_{k}\right)=\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$ as needed.

A similar argument shows that for $\ell_{1}, \ldots, \ell_{k} \in \mathbb{N}$,

$$
\left|\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{N}^{k}: x_{1}+\cdots+x_{k}=n, x_{i} \geq \ell_{i}\right\}\right|=\left|A\left(n-\ell_{1}-\cdots-\ell_{k}, k\right)\right|=\binom{n+k-\ell_{1}-\cdots-\ell_{k}-1}{k-1} .
$$

In Claim 3, we showed that $\left|A^{\prime}(n, k)\right|=\binom{n-1}{k-1}$. The number $\binom{n-1}{k-1}$ is additionally the number of subsets of $[n-1]$ of size $k-1 \ldots$ Can we find a direct bijection between $A^{\prime}(n, k)$ and these subsets?

Firstly, some notation. For a set X and a non-negative integer k, we denote the set of all k-subsets of X by

$$
\binom{X}{k}:=\{K \subseteq X:|K|=k\}
$$

We use this notation since $\left|\binom{X}{k}\right|=\binom{|X|}{k}$ for any finite set X.
Claim 4. There is a direct bijection from $A^{\prime}(n, k)$ to $\binom{[n-1]}{k-1}$.
Proof. For $\left(x_{1}, \ldots, x_{k}\right) \in A^{\prime}(n, k)$, define

$$
f\left(x_{1}, \ldots, x_{k}\right)=\left\{\sum_{j=1}^{i} x_{i}: i \in[k-1]\right\}=\left\{x_{1}, x_{1}+x_{2}, x_{1}+x_{2}+x_{3}, \ldots, x_{1}+\cdots+x_{k-1}\right\}
$$

Notice that we only consider up to the $(k-1)$ st partial sum and not the sum of all x_{i}. Intuitively, this is because we know that $x_{1}+\cdots+x_{k}=n$, so this would be redundant.

We must first argue that $f\left(x_{1}, \ldots, x_{k}\right) \in\binom{[n-1]}{k-1}$. To begin, each x_{i} is a positive integer, and so each $\sum_{j=1}^{i} x_{j}$ is also a positive integer. Furthermore, for any $i \in[k-1]$, we have

$$
1 \leq x_{1} \leq \sum_{j=1}^{i} x_{j} \leq \sum_{j=1}^{k-1} x_{j}=n-x_{k} \leq n-1
$$

Thus, $f\left(x_{1}, \ldots, x_{k}\right)$ is indeed a subset of $[n-1]$; we still must show that it has size $k-1$. By definition, $f\left(x_{1}, \ldots, x_{k}\right)$ has at most $k-1$ elements, but we could run into trouble if there were some $i \neq \ell \in[k-1]$ for which $\sum_{j=1}^{i} x_{j}=\sum_{j=1}^{\ell} x_{j}$ since then we would have written the same number twice. To show that this does not happen, we observe that for any $i \in[k-2]$,

$$
\sum_{j=1}^{i} x_{j}<\sum_{j=1}^{i} x_{j}+1 \leq \sum_{j=1}^{i+1} x_{j}
$$

Therefore, f is indeed a map from $A^{\prime}(n, k)$ to $\binom{[n-1]}{k-1}$. We must now argue that f is bijective.
Surjective: Consider any $S \in\binom{[n-1]}{k-1}$; we must find some $\left(x_{1}, \ldots, x_{k}\right) \in A^{\prime}(n, k)$ for which $f\left(x_{1}, \ldots, x_{k}\right)=S$. Suppose that $S=\left\{s_{1}, \ldots, s_{k-1}\right\}$ where $s_{1}<\cdots<s_{k-1}$. For convenience, additionally set $s_{k}=n$. Define $x_{1}=s_{1}, x_{2}=s_{2}-s_{1}, x_{3}=s_{3}-s_{2}$, etc. In other words, for $i \in\{2, \ldots, k\}$, we define $x_{i}=s_{i}-s_{i-1}$ and also $x_{1}=s_{1}$. We claim that $\left(x_{1}, \ldots, x_{k}\right) \in A^{\prime}(n, k)$ and that $f\left(x_{1}, \ldots, x_{k}\right)=S$.

To do this, we prove first by induction on $i \in[k]$ that $\sum_{j=1}^{i} x_{j}=s_{i}$. We defined $x_{1}=s_{1}$, so the base case is clear. Suppose now that the claim holds for some $i \in[k-1]$; we need to prove that $\sum_{j=1}^{i+1} x_{j}=s_{i+1}$. To see this,

$$
\sum_{j=1}^{i+1} x_{j}=\sum_{j=1}^{i} x_{j}+x_{i+1}=s_{i}+\left(s_{i+1}-s_{i}\right)=s_{i+1}
$$

Therefore, if it is the case that $\left(x_{1}, \ldots, x_{k}\right) \in A^{\prime}(n, k)$, we have shown that $f\left(x_{1}, \ldots, x_{k}\right)=S$. To show that $\left(x_{1}, \ldots, x_{k}\right) \in A^{\prime}(n, k)$, we need to show that each x_{i} is a positive integer and that $x_{1}+\cdots+x_{k}=n$. The latter is true since we have already shown that $x_{1}+\cdots+x_{k}=s_{k}=n$. For the former, $x_{1}=s_{1} \in[n-1]$ and so $x_{1} \in \mathbb{N}_{\geq 1}$. Furthermore, $s_{i} \in[n]$ for all $i \in[k]$ and also $s_{i}>s_{i-1}$, so $x_{i}=s_{i}-s_{i-1} \geq 1$ and $x_{i} \in \mathbb{N}$.

Injective: Suppose that $\left(x_{1}, \ldots, x_{k}\right) \neq\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right) \in A^{\prime}(n, k)$; we must show that $f\left(x_{1}, \ldots, x_{k}\right) \neq$ $f\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$. Since $\left(x_{1}, \ldots, x_{k}\right) \neq\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$, there is some $i \in[k]$ for which $x_{i} \neq x_{i}^{\prime}$; let i denote the smallest such index for which this holds (so that $x_{j}=x_{j}^{\prime}$ for all $j<i$). Therefore, $\sum_{j=1}^{\ell} x_{j}=\sum_{j=1}^{\ell} x_{j}^{\prime}$ for all $\ell<i$; this additionally implies that $\sum_{j=1}^{i} x_{j} \neq \sum_{j=1}^{i} x_{j}^{\prime}$. Observe that $i \in[k-1]$. Indeed, if $i=k$, then $x_{1}+\cdots+x_{k-1}=x_{1}^{\prime}+\cdots+x_{k-1}^{\prime}$, but we know also that $x_{1}+\cdots+x_{k}=n=x_{1}^{\prime}+\cdots+x_{k}^{\prime}$, which implies that $x_{k}=x_{k}^{\prime}$ as well; a contradiction.

Without loss of generality, suppose that $\sum_{j=1}^{i} x_{j}<\sum_{j=1}^{i} x_{j}^{\prime}$.
Set $s_{\ell}=\sum_{j=1}^{\ell} x_{j}$ and $s_{\ell}^{\prime}=\sum_{j=1}^{\ell} x_{j}^{\prime}$ for all $\ell \in[k-1]$; thus $f\left(x_{1}, \ldots, x_{k}\right)=\left\{s_{1}, \ldots, s_{k-1}\right\}=: S$ and $f\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)=\left\{s_{1}^{\prime}, \ldots, s_{k}^{\prime}\right\}=: S^{\prime}$. By our previous observations, we know that $s_{1}<\cdots<s_{k-1}$ and $s_{1}^{\prime}<\cdots<s_{k-1}^{\prime}$; however, $s_{j}=s_{j}^{\prime}$ for all $j<i$ by the definition of i. We thus have $s_{1}^{\prime}<\cdots<$ $s_{i-1}^{\prime}<s_{i}<s_{i}^{\prime}<s_{i+1}^{\prime}<\cdots<s_{k-1}^{\prime}$; therefore, $s_{i} \in S$, but $s_{i} \notin S^{\prime}$, implying that $S \neq S^{\prime}$ as needed.

