These notes are from http://math.cmu.edu/~cocox/teaching/discrete20/rec1.pdf

For non-negative integers n, k, define the set

$$A(n,k) := \{ (x_1, \dots, x_k) \in \mathbb{N}^k : x_1 + \dots + x_k = n \}.$$

Claim 1. The number of ways to color n indistinguishable balls using k distinct colors (not every color must be used) is precisely |A(n,k)|.

Proof. Denote by C(n,k) the set of all k-colorings of n indistinguishable balls. We show that |C(n,k)| = |A(n,k)| by finding a bijection $f: C(n,k) \to A(n,k)$.

Fix $c \in C(n,k)$ and for $i \in [k]$, let c_i denote the number of balls of color i in c. Observe that $c_i \in \mathbb{N}$ for all i and that $c_1 + \cdots + c_k = n$ since there are n balls in total, each of which has a color. Thus, define $f(c) = (c_1, \ldots, c_n)$. By the observation, f is indeed a map from C(n,k) to A(n,k); we must show it is both injective and surjective.

Surjective: Consider any $(x_1, \ldots, x_k) \in A(n, k)$; we must find some coloring $c \in C(n, k)$ for which $f(c) = (x_1, \ldots, x_k)$. Consider an arbitrary ordering of the *n* balls. Define *c* by coloring the first x_1 balls with color 1, the next x_2 balls with color 2, etc. Since $x_i \in \mathbb{N}$ and $x_1 + \cdots + x_k = n$, this is a valid coloring, and $f(c) = (x_1, \ldots, x_n)$.

Injective: Consider any $c \neq c' \in C(n,k)$; we must show that $f(c) \neq f(c')$. Since $c \neq c'$ and the balls are indistinguishable, there must be some color $i \in [k]$ for which $c_i \neq c'_i$; hence $(c_1, \ldots, c_k) \neq (c'_1, \ldots, c'_k)$ and so $f(c) \neq f(c')$.

So, how big is A(n,k)?

Claim 2. $|A(n,k)| = \binom{n+k-1}{k-1} = \binom{n+k-1}{n}$.

Proof. We will prove this through what is known as the "stars and bars" argument. Let B(n, k) denote the set of all ways to arrange n indistinguishable stars (*) and k-1 indistinguishable bars (|) in a row. For instance, with n = k = 5, || * *| * | * * is an element of B(n, k). Observe that we can think of B(n, k) in the following way: there are n + k - 1 empty slots, each of which can be filled with either a * or a |. Since an element of B(n, k) is determined uniquely by the positions of the bars (since then every other slot must then contain a *), we have $|B(n, k)| = \binom{n+k-1}{k-1}$ since there are precisely this many ways to place k-1 bars into n+k-1 slots. Equivalently, an element of B(n, k) is determined uniquely by the positions of the stars, so $|B(n, k)| = \binom{n+k-1}{n}$ by the same reasoning.

Thus, it suffices to establish a bijection $f: A(n,k) \to B(n,k)$. For $(x_1,\ldots,x_k) \in A(n,k)$, we form an arrangement of stars and bars by first filling the first x_1 slots with stars and place a bar, then fill the next x_2 slots with stars and place a bar, etc. This continues until we finally place x_k stars, but we do not place a bar after them. Let $f(x_1,\ldots,x_k)$ denote this arrangement; for example, f(0,3,0,0,1) = |***|||*.

Since $x_1 + \cdots + x_k = n$, we have placed n stars and k - 1 bars, we have $f(x_1, \ldots, x_k) \in B(n, k)$. We must show now that f is a bijection. Surjective: Consider an arrangement b of stars and bars in B(n, k); we must find some $(x_1, \ldots, x_k) \in A(n, k)$ for which $f(x_1, \ldots, x_k) = b$. Let x_1 denote the number of stars which appear before the first bar (which may be 0), let x_k denote the number of stars which appear after the last bar, and for all other i, let x_i denote the number of stars which appear between the (i - 1)st bar and the ith bar. Since there are k - 1 bars, each of these numbers are well-defined and are non-negative integers. Furthermore, since there are n stars in total, $x_1 + \cdots + x_k = n$, so $(x_1, \ldots, x_k) \in A(n, k)$. Finally, by construction, $f(x_1, \ldots, x_k) = b$.

Injective: Suppose that $(x_1, \ldots, x_k), (x'_1, \ldots, x'_k) \in A(n, k)$ have $f(x_1, \ldots, x_k) = f(x'_1, \ldots, x'_k)$; we must show that $x_i = x'_i$ for all $i \in [k]$. By construction, the arrangement $f(x_1, \ldots, x_k)$ has x_1 stars before the first bar, x_k stars after the last bar, and x_i stars between the (i - 1)st and *i*th bars for all other *i*. Similarly, $f(x'_1, \ldots, x'_k)$ has x'_1 stars before the first bar, x'_k stars after the last bar, and x'_i stars between the (i - 1)st and *i*th bars for all other *i*. We conclude that $x_i = x'_i$ for all $i \in [k]$. \Box

For non-negative integers n, k, define the set

$$A'(n,k) := \{ (x_1, \dots, x_k) \in \mathbb{N}^k : x_1 + \dots + x_k = n, \ x_i \ge 1 \}.$$

Following the same ideas as in Claim 1, we see that |A'(n,k)| is precisely the number of ways to color n indistinguishable balls using k distinct colors so that each color is used at least once. So, how big is A'(n,k)?

Claim 3. $|A'(n,k)| = |A(n-k,k)| = {\binom{n-1}{k-1}}.$

Proof. We already know that $|A(n-k,k)| = \binom{n-1}{k-1}$ through Claim 1, so it is enough to show that |A'(n,k)| = |A(n-k,k)|, which we will do by finding a bijection $f: A'(n,k) \to A(n-k,k)$. For $(x_1,\ldots,x_k) \in A'(n,k)$, define

$$f(x_1, \ldots, x_k) = (x_1 - 1, \ldots, x_k - 1).$$

Since each x_i is a positive integer, $x_i - 1$ is a non-negative integer and $(x_1 - 1) + \cdots + (x_k - 1) = (x_1 + \cdots + x_k) - k = n - k$; hence f is indeed a map from A'(n,k) to A(n-k,k). We must show that f is bijective.

Surjective: Consider $(y_1, \ldots, y_k) \in A(n-k, k)$; we must find $(x_1, \ldots, x_k) \in A'(n, k)$ with $f(x_1, \ldots, x_k) = (y_1, \ldots, y_k)$. Consider $x_i = y_i + 1$; certainly $x_i \in \mathbb{N}_{\geq 1}$ since $y_i \in \mathbb{N}$ and $x_1 + \cdots + x_k = (y_1 + 1) + \cdots + (y_k + 1) = n-k+k = n$, so $(x_1, \ldots, x_k) \in A'(n, k)$. Furthermore, by definition, $f(x_1, \ldots, x_k) = (y_1, \ldots, y_k)$.

Injective: Suppose that $(x_1, ..., x_k), (x'_1, ..., x'_k) \in A'(n, k)$ have $f(x_1, ..., x_k) = f(x'_1, ..., x'_k)$. Thus, $(x_1 - 1, ..., x_k - 1) = (x'_1 - 1, ..., x'_k - 1)$ and so $(x_1, ..., x_k) = (x'_1, ..., x'_k)$ as needed. \Box

A similar argument shows that for $\ell_1, \ldots, \ell_k \in \mathbb{N}$,

$$\left|\left\{(x_1,\ldots,x_k)\in\mathbb{N}^k: x_1+\cdots+x_k=n, \ x_i\ge\ell_i\right\}\right| = |A(n-\ell_1-\cdots-\ell_k,k)| = \binom{n+k-\ell_1-\cdots-\ell_k-1}{k-1}.$$

In Claim 3, we showed that $|A'(n,k)| = \binom{n-1}{k-1}$. The number $\binom{n-1}{k-1}$ is additionally the number of subsets of [n-1] of size k-1... Can we find a direct bijection between A'(n,k) and these subsets?

Firstly, some notation. For a set X and a non-negative integer k, we denote the set of all k-subsets of X by

$$\binom{X}{k} := \{ K \subseteq X : |K| = k \}.$$

We use this notation since $|\binom{X}{k}| = \binom{|X|}{k}$ for any finite set X.

Claim 4. There is a direct bijection from A'(n,k) to $\binom{[n-1]}{k-1}$.

Proof. For $(x_1, \ldots, x_k) \in A'(n, k)$, define

$$f(x_1,\ldots,x_k) = \left\{\sum_{j=1}^i x_i : i \in [k-1]\right\} = \left\{x_1, \ x_1 + x_2, \ x_1 + x_2 + x_3, \ \ldots, \ x_1 + \cdots + x_{k-1}\right\}.$$

Notice that we only consider up to the (k-1)st partial sum and not the sum of all x_i . Intuitively, this is because we know that $x_1 + \cdots + x_k = n$, so this would be redundant.

We must first argue that $f(x_1, \ldots, x_k) \in {\binom{[n-1]}{k-1}}$. To begin, each x_i is a positive integer, and so each $\sum_{j=1}^{i} x_j$ is also a positive integer. Furthermore, for any $i \in [k-1]$, we have

$$1 \le x_1 \le \sum_{j=1}^{i} x_j \le \sum_{j=1}^{k-1} x_j = n - x_k \le n - 1.$$

Thus, $f(x_1, \ldots, x_k)$ is indeed a subset of [n-1]; we still must show that it has size k-1. By definition, $f(x_1, \ldots, x_k)$ has at most k-1 elements, but we could run into trouble if there were some $i \neq \ell \in [k-1]$ for which $\sum_{j=1}^{i} x_j = \sum_{j=1}^{\ell} x_j$ since then we would have written the same number twice. To show that this does not happen, we observe that for any $i \in [k-2]$,

$$\sum_{j=1}^{i} x_j < \sum_{j=1}^{i} x_j + 1 \le \sum_{j=1}^{i+1} x_j.$$

Therefore, f is indeed a map from A'(n,k) to $\binom{[n-1]}{k-1}$. We must now argue that f is bijective.

Surjective: Consider any $S \in {\binom{[n-1]}{k-1}}$; we must find some $(x_1, \ldots, x_k) \in A'(n, k)$ for which $f(x_1, \ldots, x_k) = S$. Suppose that $S = \{s_1, \ldots, s_{k-1}\}$ where $s_1 < \cdots < s_{k-1}$. For convenience, additionally set $s_k = n$. Define $x_1 = s_1, x_2 = s_2 - s_1, x_3 = s_3 - s_2$, etc. In other words, for $i \in \{2, \ldots, k\}$, we define $x_i = s_i - s_{i-1}$ and also $x_1 = s_1$. We claim that $(x_1, \ldots, x_k) \in A'(n, k)$ and that $f(x_1, \ldots, x_k) = S$.

To do this, we prove first by induction on $i \in [k]$ that $\sum_{j=1}^{i} x_j = s_i$. We defined $x_1 = s_1$, so the base case is clear. Suppose now that the claim holds for some $i \in [k-1]$; we need to prove that $\sum_{j=1}^{i+1} x_j = s_{i+1}$. To see this,

$$\sum_{j=1}^{i+1} x_j = \sum_{j=1}^{i} x_j + x_{i+1} = s_i + (s_{i+1} - s_i) = s_{i+1}$$

Therefore, if it is the case that $(x_1, \ldots, x_k) \in A'(n, k)$, we have shown that $f(x_1, \ldots, x_k) = S$. To show that $(x_1, \ldots, x_k) \in A'(n, k)$, we need to show that each x_i is a positive integer and that $x_1 + \cdots + x_k = n$. The latter is true since we have already shown that $x_1 + \cdots + x_k = s_k = n$. For the former, $x_1 = s_1 \in [n-1]$ and so $x_1 \in \mathbb{N}_{\geq 1}$. Furthermore, $s_i \in [n]$ for all $i \in [k]$ and also $s_i > s_{i-1}$, so $x_i = s_i - s_{i-1} \geq 1$ and $x_i \in \mathbb{N}$.

Injective: Suppose that $(x_1, \ldots, x_k) \neq (x'_1, \ldots, x'_k) \in A'(n, k)$; we must show that $f(x_1, \ldots, x_k) \neq f(x'_1, \ldots, x'_k)$. Since $(x_1, \ldots, x_k) \neq (x'_1, \ldots, x'_k)$, there is some $i \in [k]$ for which $x_i \neq x'_i$; let i denote the smallest such index for which this holds (so that $x_j = x'_j$ for all j < i). Therefore, $\sum_{j=1}^{\ell} x_j = \sum_{j=1}^{\ell} x'_j$ for all $\ell < i$; this additionally implies that $\sum_{j=1}^{i} x_j \neq \sum_{j=1}^{i} x'_j$. Observe that $i \in [k-1]$. Indeed, if i = k, then $x_1 + \cdots + x_{k-1} = x'_1 + \cdots + x'_{k-1}$, but we know also that $x_1 + \cdots + x_k = n = x'_1 + \cdots + x'_k$, which implies that $x_k = x'_k$ as well; a contradiction.

Without loss of generality, suppose that $\sum_{j=1}^{i} x_j < \sum_{j=1}^{i} x'_j$.

Set $s_{\ell} = \sum_{j=1}^{\ell} x_j$ and $s'_{\ell} = \sum_{j=1}^{\ell} x'_j$ for all $\ell \in [k-1]$; thus $f(x_1, \ldots, x_k) = \{s_1, \ldots, s_{k-1}\} =: S$ and $f(x'_1, \ldots, x'_k) = \{s'_1, \ldots, s'_k\} =: S'$. By our previous observations, we know that $s_1 < \cdots < s_{k-1}$ and $s'_1 < \cdots < s'_{k-1}$; however, $s_j = s'_j$ for all j < i by the definition of i. We thus have $s'_1 < \cdots < s'_{i-1} < s_i < s'_i < s'_{i+1} < \cdots < s'_{k-1}$; therefore, $s_i \in S$, but $s_i \notin S'$, implying that $S \neq S'$ as needed. \Box