
Discrete Math Recitation #1 Jan 14

These notes are from http://math.cmu.edu/~cocox/teaching/discrete20/rec1.pdf

For non-negative integers n, k, define the set

A(n, k) :=
{

(x1, . . . , xk) ∈ Nk : x1 + · · ·+ xk = n
}
.

Claim 1. The number of ways to color n indistinguishable balls using k distinct colors (not every

color must be used) is precisely |A(n, k)|.

Proof. Denote by C(n, k) the set of all k-colorings of n indistinguishable balls. We show that

|C(n, k)| = |A(n, k)| by finding a bijection f : C(n, k)→ A(n, k).

Fix c ∈ C(n, k) and for i ∈ [k], let ci denote the number of balls of color i in c. Observe that

ci ∈ N for all i and that c1 + · · · + ck = n since there are n balls in total, each of which has a color.

Thus, define f(c) = (c1, . . . , cn). By the observation, f is indeed a map from C(n, k) to A(n, k); we

must show it is both injective and surjective.

Surjective: Consider any (x1, . . . , xk) ∈ A(n, k); we must find some coloring c ∈ C(n, k) for which

f(c) = (x1, . . . , xk). Consider an arbitrary ordering of the n balls. Define c by coloring the first x1
balls with color 1, the next x2 balls with color 2, etc. Since xi ∈ N and x1 + · · · + xk = n, this is a

valid coloring, and f(c) = (x1, . . . , xn).

Injective: Consider any c 6= c′ ∈ C(n, k); we must show that f(c) 6= f(c′). Since c 6= c′ and the

balls are indistinguishable, there must be some color i ∈ [k] for which ci 6= c′i; hence (c1, . . . , ck) 6=
(c′1, . . . , c

′
k) and so f(c) 6= f(c′).

So, how big is A(n, k)?

Claim 2. |A(n, k)| =
(
n+k−1
k−1

)
=
(
n+k−1

n

)
.

Proof. We will prove this through what is known as the “stars and bars” argument. Let B(n, k)

denote the set of all ways to arrange n indistinguishable stars (∗) and k− 1 indistinguishable bars (|)
in a row. For instance, with n = k = 5, || ∗ ∗| ∗ | ∗ ∗ is an element of B(n, k). Observe that we can

think of B(n, k) in the following way: there are n + k − 1 empty slots, each of which can be filled

with either a ∗ or a |. Since an element of B(n, k) is determined uniquely by the positions of the

bars (since then every other slot must then contain a ∗), we have |B(n, k)| =
(
n+k−1
k−1

)
since there are

precisely this many ways to place k− 1 bars into n+ k− 1 slots. Equivalently, an element of B(n, k)

is determined uniquely by the positions of the stars, so |B(n, k)| =
(
n+k−1

n

)
by the same reasoning.

Thus, it suffices to establish a bijection f : A(n, k) → B(n, k). For (x1, . . . , xk) ∈ A(n, k), we

form an arrangement of stars and bars by first filling the first x1 slots with stars and place a bar,

then fill the next x2 slots with stars and place a bar, etc. This continues until we finally place xk
stars, but we do not place a bar after them. Let f(x1, . . . , xk) denote this arrangement; for example,

f(0, 3, 0, 0, 1) = | ∗ ∗ ∗ |||∗.
Since x1 + · · ·+ xk = n, we have placed n stars and k − 1 bars, we have f(x1, . . . , xk) ∈ B(n, k).

We must show now that f is a bijection.

1

http://math.cmu.edu/~cocox/teaching/discrete20/rec1.pdf


Surjective: Consider an arrangement b of stars and bars in B(n, k); we must find some (x1, . . . , xk) ∈
A(n, k) for which f(x1, . . . , xk) = b. Let x1 denote the number of stars which appear before the first

bar (which may be 0), let xk denote the number of stars which appear after the last bar, and for

all other i, let xi denote the number of stars which appear between the (i − 1)st bar and the ith

bar. Since there are k− 1 bars, each of these numbers are well-defined and are non-negative integers.

Furthermore, since there are n stars in total, x1 + · · ·+ xk = n, so (x1, . . . , xk) ∈ A(n, k). Finally, by

construction, f(x1, . . . , xk) = b.

Injective: Suppose that (x1, . . . , xk), (x′1, . . . , x
′
k) ∈ A(n, k) have f(x1, . . . , xk) = f(x′1, . . . , x

′
k); we

must show that xi = x′i for all i ∈ [k]. By construction, the arrangement f(x1, . . . , xk) has x1 stars

before the first bar, xk stars after the last bar, and xi stars between the (i− 1)st and ith bars for all

other i. Similarly, f(x′1, . . . , x
′
k) has x′1 stars before the first bar, x′k stars after the last bar, and x′i

stars between the (i− 1)st and ith bars for all other i. We conclude that xi = x′i for all i ∈ [k].

For non-negative integers n, k, define the set

A′(n, k) :=
{

(x1, . . . , xk) ∈ Nk : x1 + · · ·+ xk = n, xi ≥ 1
}
.

Following the same ideas as in Claim 1, we see that |A′(n, k)| is precisely the number of ways to color

n indistinguishable balls using k distinct colors so that each color is used at least once. So, how big

is A′(n, k)?

Claim 3. |A′(n, k)| = |A(n− k, k)| =
(
n−1
k−1
)
.

Proof. We already know that |A(n − k, k)| =
(
n−1
k−1
)

through Claim 1, so it is enough to show that

|A′(n, k)| = |A(n − k, k)|, which we will do by finding a bijection f : A′(n, k) → A(n − k, k). For

(x1, . . . , xk) ∈ A′(n, k), define

f(x1, . . . , xk) = (x1 − 1, . . . , xk − 1).

Since each xi is a positive integer, xi − 1 is a non-negative integer and (x1 − 1) + · · · + (xk − 1) =

(x1 + · · ·+xk)− k = n− k; hence f is indeed a map from A′(n, k) to A(n− k, k). We must show that

f is bijective.

Surjective: Consider (y1, . . . , yk) ∈ A(n−k, k); we must find (x1, . . . , xk) ∈ A′(n, k) with f(x1, . . . , xk) =

(y1, . . . , yk). Consider xi = yi+1; certainly xi ∈ N≥1 since yi ∈ N and x1+· · ·+xk = (y1+1)+· · ·+(yk+

1) = n−k+k = n, so (x1, . . . , xk) ∈ A′(n, k). Furthermore, by definition, f(x1, . . . , xk) = (y1, . . . , yk).

Injective: Suppose that (x1, . . . , xk), (x′1, . . . , x
′
k) ∈ A′(n, k) have f(x1, . . . , xk) = f(x′1, . . . , x

′
k).

Thus, (x1 − 1, . . . , xk − 1) = (x′1 − 1, . . . , x′k − 1) and so (x1, . . . , xk) = (x′1, . . . , x
′
k) as needed.

A similar argument shows that for `1, . . . , `k ∈ N,

∣∣{(x1, . . . , xk) ∈ Nk : x1+· · ·+xk = n, xi ≥ `i
}∣∣ = |A(n−`1−· · ·−`k, k)| =

(
n + k − `1 − · · · − `k − 1

k − 1

)
.
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In Claim 3, we showed that |A′(n, k)| =
(
n−1
k−1
)
. The number

(
n−1
k−1
)

is additionally the number of

subsets of [n− 1] of size k − 1... Can we find a direct bijection between A′(n, k) and these subsets?

Firstly, some notation. For a set X and a non-negative integer k, we denote the set of all k-subsets

of X by (
X

k

)
:=
{
K ⊆ X : |K| = k

}
.

We use this notation since
∣∣(X

k

)∣∣ =
(|X|

k

)
for any finite set X.

Claim 4. There is a direct bijection from A′(n, k) to
([n−1]
k−1

)
.

Proof. For (x1, . . . , xk) ∈ A′(n, k), define

f(x1, . . . , xk) =

{ i∑
j=1

xi : i ∈ [k − 1]

}
=
{
x1, x1 + x2, x1 + x2 + x3, . . . , x1 + · · ·+ xk−1

}
.

Notice that we only consider up to the (k − 1)st partial sum and not the sum of all xi. Intuitively,

this is because we know that x1 + · · ·+ xk = n, so this would be redundant.

We must first argue that f(x1, . . . , xk) ∈
([n−1]
k−1

)
. To begin, each xi is a positive integer, and so

each
∑i

j=1 xj is also a positive integer. Furthermore, for any i ∈ [k − 1], we have

1 ≤ x1 ≤
i∑

j=1

xj ≤
k−1∑
j=1

xj = n− xk ≤ n− 1.

Thus, f(x1, . . . , xk) is indeed a subset of [n − 1]; we still must show that it has size k − 1. By

definition, f(x1, . . . , xk) has at most k− 1 elements, but we could run into trouble if there were some

i 6= ` ∈ [k − 1] for which
∑i

j=1 xj =
∑`

j=1 xj since then we would have written the same number

twice. To show that this does not happen, we observe that for any i ∈ [k − 2],

i∑
j=1

xj <

i∑
j=1

xj + 1 ≤
i+1∑
j=1

xj .

Therefore, f is indeed a map from A′(n, k) to
([n−1]
k−1

)
. We must now argue that f is bijective.

Surjective: Consider any S ∈
([n−1]
k−1

)
; we must find some (x1, . . . , xk) ∈ A′(n, k) for which

f(x1, . . . , xk) = S. Suppose that S = {s1, . . . , sk−1} where s1 < · · · < sk−1. For convenience,

additionally set sk = n. Define x1 = s1, x2 = s2 − s1, x3 = s3 − s2, etc. In other words, for

i ∈ {2, . . . , k}, we define xi = si − si−1 and also x1 = s1. We claim that (x1, . . . , xk) ∈ A′(n, k) and

that f(x1, . . . , xk) = S.

To do this, we prove first by induction on i ∈ [k] that
∑i

j=1 xj = si. We defined x1 = s1, so the

base case is clear. Suppose now that the claim holds for some i ∈ [k − 1]; we need to prove that∑i+1
j=1 xj = si+1. To see this,

i+1∑
j=1

xj =
i∑

j=1

xj + xi+1 = si + (si+1 − si) = si+1.
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Therefore, if it is the case that (x1, . . . , xk) ∈ A′(n, k), we have shown that f(x1, . . . , xk) = S.

To show that (x1, . . . , xk) ∈ A′(n, k), we need to show that each xi is a positive integer and that

x1 + · · · + xk = n. The latter is true since we have already shown that x1 + · · · + xk = sk = n. For

the former, x1 = s1 ∈ [n− 1] and so x1 ∈ N≥1. Furthermore, si ∈ [n] for all i ∈ [k] and also si > si−1,

so xi = si − si−1 ≥ 1 and xi ∈ N.

Injective: Suppose that (x1, . . . , xk) 6= (x′1, . . . , x
′
k) ∈ A′(n, k); we must show that f(x1, . . . , xk) 6=

f(x′1, . . . , x
′
k). Since (x1, . . . , xk) 6= (x′1, . . . , x

′
k), there is some i ∈ [k] for which xi 6= x′i; let i denote the

smallest such index for which this holds (so that xj = x′j for all j < i). Therefore,
∑`

j=1 xj =
∑`

j=1 x
′
j

for all ` < i; this additionally implies that
∑i

j=1 xj 6=
∑i

j=1 x
′
j . Observe that i ∈ [k − 1]. Indeed, if

i = k, then x1 + · · ·+xk−1 = x′1 + · · ·+x′k−1, but we know also that x1 + · · ·+xk = n = x′1 + · · ·+x′k,

which implies that xk = x′k as well; a contradiction.

Without loss of generality, suppose that
∑i

j=1 xj <
∑i

j=1 x
′
j .

Set s` =
∑`

j=1 xj and s′` =
∑`

j=1 x
′
j for all ` ∈ [k − 1]; thus f(x1, . . . , xk) = {s1, . . . , sk−1} =: S

and f(x′1, . . . , x
′
k) = {s′1, . . . , s′k} =: S′. By our previous observations, we know that s1 < · · · < sk−1

and s′1 < · · · < s′k−1; however, sj = s′j for all j < i by the definition of i. We thus have s′1 < · · · <
s′i−1 < si < s′i < s′i+1 < · · · < s′k−1; therefore, si ∈ S, but si /∈ S′, implying that S 6= S′ as needed.
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