This quiz is from http://math.cmu.edu/~cocox/teaching/discrete20/quiz14.pdf
Problem 1. Let $G=(V, E)$ be a connected graph and let $f: V \rightarrow X$ be any function (where X is any arbitrary set). Prove that either f is a constant function (i.e. $|f(V)|=1$) or that there is an edge $\{u, v\} \in E$ where $f(u) \neq f(v)$. Show also that the connectivity assumption is crucial.
(Note: This fact pops up time and time again, so it's worth keeping in mind!)
Problem 2. Let $G=(V, E)$ be a connected graph and let S be any subset of E which does not contain a cycle. Prove that G has a spanning tree which uses every edge of S. In other words, any acyclic set of edges can be extended to a spanning tree.

Problem 3. Let T, F be trees on the same vertex set. For any edge $e \in E(T) \backslash E(F)$, we know that $F+e$ contains a unique cycle: call this cycle C_{e}. Prove that

$$
E(F) \backslash E(T) \subseteq \bigcup_{e \in E(T) \backslash E(F)} E\left(C_{e}\right) .
$$

Problem 4. Let $G=(V, E)$ be a weighted graph with weight function $w: E \rightarrow \mathbb{R}$. Suppose that G is connected and every edge has a distinct weight under w (i.e. $w(e) \neq w(s)$ for all $e \neq s \in E$). Prove that G has a unique minimum spanning tree.

