Quiz #12

This quiz is from http://math.cmu.edu/~cocox/teaching/discrete20/quiz12.pdf

Problem 1. Prove that G is a connected, 2-regular graph if and only if G is a cycle.

Problem 2. There are $n \ge 3$ participants in an event. Each of these participants know at least n/2 other participants. Show that there is a way to seat the participants around a circular table so that each participant knows both people seated next to them.

Problem 3. Let G be any graph. A cycle decomposition of G is a collection of cycles C_1, \ldots, C_k that partition the edge-set of G; that is $E = \bigsqcup_{i=1}^k E(C_i)$. Note that in a cycle decomposition, the cycles can share vertices, but they cannot share edges.

Show that G has a cycle decomposition if and only if every vertex of G has even degree.

Problem 4. Let G be a graph. Let $\operatorname{conn}(G)$ denote the set of connected components of G (e.g. $\operatorname{conn}(G) = \{G\}$ if and only if G is connected). For a subset $U \subseteq V$, let G - U denote the graph formed by deleting the vertices in U from G: formally, $V(G-U) = V \setminus U$ and $E(G-U) = E \cap \binom{V \setminus U}{2}$. Show that if G is Hamiltonian, then $|\operatorname{conn}(G-U)| \leq |U|$ for all non-empty $U \subseteq V$.

Problem 5 (Bonus). Let G be a graph. For a subset $A \subseteq V$ and a vertex $v \in V$, define $\deg_A(v) = |\{u \in A : \{u, v\} \in E\}|$. Consider the following algorithm whose input is a graph G = (V, E):

procedure BiPARTITION(G)

 $\begin{array}{l} V_0 \leftarrow V \\ V_1 \leftarrow \varnothing \\ \textbf{while there exists } v \in V_i \text{ such that } \deg_{V_{1-i}}(v) < \deg(v)/2 \textbf{ do} \\ V_i \leftarrow V_i \setminus \{v\} \\ V_{1-i} \leftarrow V_{1-i} \cup \{v\} \\ \textbf{end while} \\ \textbf{return } (V_0, V_1) \\ \textbf{end procedure} \end{array}$

Prove the following:

- 1. BIPARTITION(G) eventually terminates and returns a pair (V_0, V_1) where $V = V_0 \sqcup V_1$. (Hint: Show the algorithm terminates after at most |E| iterations of the while loop)
- 2. If BIPARTITION(G) = (V_0, V_1) , then G has at least |E|/2 edges between V_0 and V_1 .

(Note: This yields a polynomial-time algorithm to find the subgraph in HW7(5))