This quiz is from http://math.cmu.edu/~cocox/teaching/discrete20/quiz11.pdf

Problem 1. Let X be a random variable on a finite or countable probability space $(\Omega, \operatorname{Pr})$ such that $\mathbb{E} X$ is finite. Show that there exist $\omega, \omega^{\prime} \in \Omega$ for which $X(\omega) \leq \mathbb{E} X \leq X\left(\omega^{\prime}\right)$.

Problem 2. State and prove Markov's inequality.
Problem 3. State and prove Chebyshev's inequality.
Problem 4. Suppose a coin is biased so that $\operatorname{Pr}[H]=p$ and $\operatorname{Pr}[T]=1-p$ for some fixed $p \in(0,1)$. Consider repeatedly flipping this coin (flips are independent) until we see a T. Let X be the random variable which counts the number of heads in the experiment (e.g. $X(H H H T)=3$ and $X(T)=0$). Compute $\mathbb{E} X$.

Problem 5 (Bonus). Recall property S_{k} from $\operatorname{HW7}(1)$. Let $n(k)$ denote the least integer n for which there is a tournament with n teams which has property S_{k}. Prove that

$$
2^{k+1}-1 \leq n(k) \leq k^{2} 2^{k+2}
$$

