Discrete Math

Quiz #11

This quiz is from http://math.cmu.edu/~cocox/teaching/discrete20/quiz11.pdf

Problem 1. Let X be a random variable on a finite or countable probability space (Ω, \mathbf{Pr}) such that $\mathbb{E} X$ is finite. Show that there exist $\omega, \omega' \in \Omega$ for which $X(\omega) \leq \mathbb{E} X \leq X(\omega')$.

Problem 2. State and prove Markov's inequality.

Problem 3. State and prove Chebyshev's inequality.

Problem 4. Suppose a coin is biased so that $\mathbf{Pr}[H] = p$ and $\mathbf{Pr}[T] = 1 - p$ for some fixed $p \in (0, 1)$. Consider repeatedly flipping this coin (flips are independent) until we see a T. Let X be the random variable which counts the number of heads in the experiment (e.g. X(HHHT) = 3 and X(T) = 0). Compute $\mathbb{E} X$.

Problem 5 (Bonus). Recall property S_k from HW7(1). Let n(k) denote the least integer n for which there is a tournament with n teams which has property S_k . Prove that

$$2^{k+1} - 1 \le n(k) \le k^2 2^{k+2}.$$