Discrete Math

These notes are from http://math.cmu.edu/~cocox/teaching/discrete20/pie.pdf

Let Ω be a finite set. For a subset $X \subseteq \Omega$, the indicator function for X is the function $\mathbf{1}_X \colon \Omega \to \mathbb{R}$ where $\mathbf{1}_X(x) = 1$ if $x \in X$ and $\mathbf{1}_X(x) = 0$ if $x \notin X$. Observe that

$$|X| = \sum_{x \in \Omega} \mathbf{1}_X(x).$$

Let $B_1, \ldots, B_n \subseteq \Omega$ and for $S \subseteq [n]$, define $B_S \stackrel{\text{def}}{=} \bigcap_{i \in S} B_i$. For $m \in \{0, \ldots, n\}$ define the function $f_m \colon \Omega \to \mathbb{R}$ by

$$f_m(x) \stackrel{\text{def}}{=} \sum_{S \in \binom{[n]}{\leq m}} (-1)^{|S|} \mathbf{1}_{B_S}(x),$$

where $\binom{[n]}{\leq m} \stackrel{\text{def}}{=} \{S \subseteq [n] : |S| \leq m\}$. Additionally, set $f \stackrel{\text{def}}{=} f_n$, so that

$$f(x) = \sum_{S \subseteq [n]} (-1)^{|S|} \mathbf{1}_{B_S}(x).$$

Now, for $x \in \Omega$, define

$$N_x \stackrel{\text{def}}{=} \{ i \in [n] : x \in B_i \},\$$

and observe that $x \in B_S$ if and only if $S \subseteq N_x$.

The inclusion-exclusion formula will follow almost immediately from the following lemma.

Lemma 1. $f(x) = \mathbf{1}_{\Omega \setminus \bigcup_{i \in [n]} B_i}(x)$ for all $x \in \Omega$.

Proof. Fix $x \in \Omega$. We compute

$$f(x) = \sum_{S \subseteq [n]} (-1)^{|S|} \mathbf{1}_{B_S}(x) = \sum_{S \subseteq N_x} (-1)^{|S|} = \sum_{k=0}^{|N_x|} \binom{|N_x|}{k} (-1)^k.$$

The binomial theorem tells us that f(x) = 1 if $|N_x| = 0$ and f(x) = 0 otherwise. Since $|N_x| = 0$ if and only if $x \notin \bigcup_{i \in [n]} B_i$, the claim follows.

Theorem 2 (Inclusion-exclusion). $\left|\Omega \setminus \bigcup_{i \in [n]} B_i\right| = \sum_{S \subseteq [n]} (-1)^{|S|} |B_S|.$

Proof. Using the lemma above, we compute,

$$\begin{aligned} \Omega \setminus \bigcup_{i \in [n]} B_i \bigg| &= \sum_{x \in \Omega} \mathbf{1}_{\Omega \setminus \bigcup_{i \in [n]} B_i}(x) = \sum_{x \in \Omega} f(x) = \sum_{x \in \Omega} \sum_{S \subseteq [n]} (-1)^{|S|} \mathbf{1}_{B_S}(x) \\ &= \sum_{S \subseteq [n]} (-1)^{|S|} \sum_{x \in \Omega} \mathbf{1}_{B_S}(x) = \sum_{S \subseteq [n]} (-1)^{|S|} |B_S|. \end{aligned}$$

Similarly, the proof of the Bonferonni inequalities will follow almost immediately from the following lemma.

Lemma 3. For $x \in \Omega$ and $m \in \{0, \ldots, n\}$,

$$f_m(x) \ge \mathbf{1}_{\Omega \setminus \bigcup_{i \in [n]} B_i}(x) \qquad for \ m \ even,$$

$$f_m(x) \le \mathbf{1}_{\Omega \setminus \bigcup_{i \in [n]} B_i}(x) \qquad for \ m \ odd.$$

Proof. Fix $x \in \Omega$. We compute

$$f(x) = \sum_{S \in \binom{[n]}{\leq m}} (-1)^{|S|} \mathbf{1}_{B_S}(x) = \sum_{S \in \binom{N_x}{\leq m}} (-1)^{|S|} = \sum_{k=0}^m \binom{|N_x|}{k} (-1)^k.$$

If $|N_x| = 0$, then certainly f(x) = 1. On the other hand, if $|N_x| \ge 1$, then a practice problem suggested in Recitation 4 tells us that $f(x) = (-1)^m \binom{|N_x|-1}{m}$. Therefore, if $|N_x| \ge 1$, then $f(x) \ge 0$ if m is even and $f(x) \le 0$ if n is odd.

Since $|N_x| = 0$ if and only if $x \notin \bigcup_{i \in [n]} B_i$, the claim follows

Theorem 4 (Bonferonni inequalities).

$$\begin{aligned} \left| \Omega \setminus \bigcup_{i \in [n]} B_i \right| &\leq \sum_{S \in \binom{[n]}{\leq m}} (-1)^{|S|} |B_S| \qquad \qquad for \ m \ even, \\ \left| \Omega \setminus \bigcup_{i \in [n]} B_i \right| &\geq \sum_{S \in \binom{[n]}{\leq m}} (-1)^{|S|} |B_S| \qquad \qquad for \ m \ odd. \end{aligned}$$

Proof. The proof is identical to the proof of the inclusion-exclusion formula given above. \Box

Remark. Lemmas 1 and 3 immediately imply the probabilistic versions of inclusion-exclusion and Bonferonni as well. Indeed, since $\mathbf{Pr}[x \in X] = \mathbb{E} \mathbf{1}_X$, we can simply use expectations instead of sums, e.g. $\mathbf{Pr}[x \in \Omega \setminus \bigcup_{i \in [n]} B_i] = \mathbb{E} f$.