These notes are from http://math.cmu.edu/~cocox/teaching/discrete20/pie.pdf

Let Ω be a finite set. For a subset $X \subseteq \Omega$, the indicator function for X is the function $\mathbf{1}_{X}: \Omega \rightarrow \mathbb{R}$ where $\mathbf{1}_{X}(x)=1$ if $x \in X$ and $\mathbf{1}_{X}(x)=0$ if $x \notin X$. Observe that

$$
|X|=\sum_{x \in \Omega} \mathbf{1}_{X}(x) .
$$

Let $B_{1}, \ldots, B_{n} \subseteq \Omega$ and for $S \subseteq[n]$, define $B_{S} \stackrel{\text { def }}{=} \bigcap_{i \in S} B_{i}$. For $m \in\{0, \ldots, n\}$ define the function $f_{m}: \Omega \rightarrow \mathbb{R}$ by

$$
f_{m}(x) \stackrel{\text { def }}{=} \sum_{S \in\binom{[n]}{\leq m}}(-1)^{|S|} \mathbf{1}_{B_{S}}(x),
$$

where $\binom{[n]}{\leq m} \stackrel{\text { def }}{=}\{S \subseteq[n]:|S| \leq m\}$. Additionally, set $f \stackrel{\text { def }}{=} f_{n}$, so that

$$
f(x)=\sum_{S \subseteq[n]}(-1)^{|S|} \mathbf{1}_{B_{S}}(x) .
$$

Now, for $x \in \Omega$, define

$$
N_{x} \stackrel{\text { def }}{=}\left\{i \in[n]: x \in B_{i}\right\},
$$

and observe that $x \in B_{S}$ if and only if $S \subseteq N_{x}$.
The inclusion-exclusion formula will follow almost immediately from the following lemma.
Lemma 1. $f(x)=\mathbf{1}_{\Omega \backslash \bigcup_{i \in[n]} B_{i}}(x)$ for all $x \in \Omega$.
Proof. Fix $x \in \Omega$. We compute

$$
f(x)=\sum_{S \subseteq[n]}(-1)^{|S|} \mathbf{1}_{B_{S}}(x)=\sum_{S \subseteq N_{x}}(-1)^{|S|}=\sum_{k=0}^{\left|N_{x}\right|}\binom{\left|N_{x}\right|}{k}(-1)^{k} .
$$

The binomial theorem tells us that $f(x)=1$ if $\left|N_{x}\right|=0$ and $f(x)=0$ otherwise. Since $\left|N_{x}\right|=0$ if and only if $x \notin \bigcup_{i \in[n]} B_{i}$, the claim follows.

Theorem 2 (Inclusion-exclusion). $\left|\Omega \backslash \bigcup_{i \in[n]} B_{i}\right|=\sum_{S \subseteq[n]}(-1)^{|S|}\left|B_{S}\right|$.
Proof. Using the lemma above, we compute,

$$
\begin{aligned}
\left|\Omega \backslash \bigcup_{i \in[n]} B_{i}\right| & =\sum_{x \in \Omega} \mathbf{1}_{\Omega \backslash \bigcup_{i \in[n]} B_{i}}(x)=\sum_{x \in \Omega} f(x)=\sum_{x \in \Omega} \sum_{S \subseteq[n]}(-1)^{|S|} \mathbf{1}_{B_{S}}(x) \\
& =\sum_{S \subseteq[n]}(-1)^{|S|} \sum_{x \in \Omega} \mathbf{1}_{B_{S}}(x)=\sum_{S \subseteq[n]}(-1)^{|S|}\left|B_{S}\right| .
\end{aligned}
$$

Similarly, the proof of the Bonferonni inequalities will follow almost immediately from the following lemma.

Lemma 3. For $x \in \Omega$ and $m \in\{0, \ldots, n\}$,

$$
\begin{array}{rr}
f_{m}(x) \geq \mathbf{1}_{\Omega \backslash \bigcup_{i \in[n]} B_{i}}(x) & \text { for } m \text { even } \\
f_{m}(x) \leq \mathbf{1}_{\Omega \backslash \bigcup_{i \in[n]} B_{i}}(x) & \text { for } m \text { odd } .
\end{array}
$$

Proof. Fix $x \in \Omega$. We compute

$$
f(x)=\sum_{S \in\binom{[n]}{\leq m}}(-1)^{|S|} \mathbf{1}_{B_{S}}(x)=\sum_{\substack{N_{x} \\ \leq m}}(-1)^{|S|}=\sum_{k=0}^{m}\binom{\left|N_{x}\right|}{k}(-1)^{k} .
$$

If $\left|N_{x}\right|=0$, then certainly $f(x)=1$. On the other hand, if $\left|N_{x}\right| \geq 1$, then a practice problem suggested in Recitation 4 tells us that $f(x)=(-1)^{m}\binom{\left|N_{x}\right|-1}{m}$. Therefore, if $\left|N_{x}\right| \geq 1$, then $f(x) \geq 0$ if m is even and $f(x) \leq 0$ if n is odd.

Since $\left|N_{x}\right|=0$ if and only if $x \notin \bigcup_{i \in[n]} B_{i}$, the claim follows
Theorem 4 (Bonferonni inequalities).

$$
\begin{array}{ll}
\left|\Omega \backslash \bigcup_{i \in[n]} B_{i}\right| \leq \sum_{S \in\left(\begin{array}{ll}
{[n]} \\
\leq m \\
\hline
\end{array}\right.}(-1)^{|S|}\left|B_{S}\right| & \text { for } m \text { even } \\
\left|\Omega \backslash \bigcup_{i \in[n]} B_{i}\right| \geq \sum_{S \in\left(\begin{array}{c}
{[n]} \\
\leq m \\
\leq m
\end{array}\right.}(-1)^{|S|}\left|B_{S}\right| & \text { for } m \text { odd. }
\end{array}
$$

Proof. The proof is identical to the proof of the inclusion-exclusion formula given above.
Remark. Lemmas 1 and 3 immediately imply the probabilistic versions of inclusion-exclusion and Bonferonni as well. Indeed, since $\operatorname{Pr}[x \in X]=\mathbb{E} \mathbf{1}_{X}$, we can simply use expectations instead of sums, e.g. $\operatorname{Pr}\left[x \in \Omega \backslash \bigcup_{i \in[n]} B_{i}\right]=\mathbb{E} f$.

