Let $(\Omega, \mathbf{P r})$ be a finite probability space and let $A_{1}, \ldots, A_{n} \subseteq \Omega$ be nontrivial events. We saw in Recitation 9 that if A_{1}, \ldots, A_{n} are mutually independent, then $|\Omega| \geq 2^{n}$. But what if A_{1}, \ldots, A_{n} are only pairwise independent?

Claim 1. If $A_{1}, \ldots, A_{n} \subseteq \Omega$ are pairwise independent and nontrivial, then $|\Omega| \geq n+1$.
(Warning: the following proof requires linear algebra know-how)
Proof. Without loss of generality, we may suppose that $\operatorname{Pr}[\omega] \neq 0$ for all $\omega \in \Omega$. We can thus define an inner product on \mathbb{R}^{Ω} by

$$
\langle x, y\rangle=\sum_{\omega \in \Omega} \operatorname{Pr}[\omega] \cdot x(\omega) \cdot y(\omega),
$$

for any $x, y \in \mathbb{R}^{\Omega}$. For $i \in[n]$, define $x_{i} \in \mathbb{R}^{\Omega}$ by

$$
x_{i}(\omega)=\mathbf{1}\left[\omega \in A_{i}\right]-\operatorname{Pr}\left[A_{i}\right] .
$$

Also define $x_{0} \in \mathbb{R}^{\Omega}$ by $x_{0}(\omega)=1$. Certainly $x_{0} \neq 0$, and for any $i \in[n], x_{i} \neq 0$ since A_{i} is nontrivial.
Now, for any $i \in[n]$, we see that

$$
\begin{aligned}
\left\langle x_{0}, x_{i}\right\rangle & =\sum_{\omega \in \Omega} \operatorname{Pr}[\omega]\left(\mathbf{1}\left[\omega \in A_{i}\right]-\operatorname{Pr}\left[A_{i}\right]\right) \\
& =\sum_{\omega \in A_{i}} \operatorname{Pr}[\omega]-\operatorname{Pr}\left[A_{i}\right] \sum_{\omega \in \Omega} \operatorname{Pr}[\omega]=0 .
\end{aligned}
$$

For any $i \neq j \in[n]$, we can compute

$$
\begin{aligned}
\left\langle x_{i}, x_{j}\right\rangle & =\sum_{\omega \in \Omega} \operatorname{Pr}[\omega]\left(\mathbf{1}\left[\omega \in A_{i}\right]-\operatorname{Pr}\left[A_{i}\right]\right)\left(\mathbf{1}\left[\omega \in A_{j}\right]-\operatorname{Pr}\left[A_{j}\right]\right) \\
& =\sum_{\omega \in A_{i} \cap A_{j}} \operatorname{Pr}[\omega]-\operatorname{Pr}\left[A_{i}\right] \sum_{\omega \in A_{j}} \operatorname{Pr}[\omega]-\operatorname{Pr}\left[A_{j}\right] \sum_{\omega \in A_{i}} \operatorname{Pr}[\omega]+\operatorname{Pr}\left[A_{i}\right] \operatorname{Pr}\left[A_{j}\right] \sum_{\omega \in \Omega} \operatorname{Pr}[\omega] \\
& =\operatorname{Pr}\left[A_{i} \cap A_{j}\right]-2 \operatorname{Pr}\left[A_{i}\right] \operatorname{Pr}\left[A_{j}\right]+\operatorname{Pr}\left[A_{i}\right] \operatorname{Pr}\left[A_{j}\right]=0,
\end{aligned}
$$

since A_{i} and A_{j} are independent.
Putting this together, we have shown that $x_{0}, \ldots, x_{n} \in \mathbb{R}^{\Omega}$ are non-zero vectors which are pairwise orthogonal; thus, $|\Omega| \geq n+1$.

The bound in Claim 1 is tight (for infinitely many values of n). Here is one example:
Consider flipping a fair coin k times: so $\Omega=\{0,1\}^{k}$ and Pr is the uniform distribution. For $S \subseteq[k]$,

$$
A_{S}=\left\{\omega \in \Omega: \sum_{i \in S} \omega_{i} \equiv 0 \quad(\bmod 2)\right\}
$$

We claim that $\mathcal{A}=\left\{A_{S}: S \subseteq[k] \wedge S \neq \varnothing\right\}$ is pairwise independent. Indeed, we first notice that for any $S \neq \varnothing, \operatorname{Pr}\left[A_{S}\right]=1 / 2$. We next observe that for any nonempty $S \neq T$,

$$
\begin{aligned}
A_{S} \cap A_{T} & =\left\{\omega \in \Omega: \sum_{i \in S} \omega_{i} \equiv \sum_{i \in T} \omega_{i} \equiv 0 \quad(\bmod 2)\right\} \\
& =\left\{\omega \in \Omega: \sum_{i \in S \backslash T} \omega_{i} \equiv \sum_{i \in T \backslash S} \omega_{i} \equiv \sum_{i \in S \cap T} \omega_{i} \quad(\bmod 2)\right\} .
\end{aligned}
$$

Since $S \neq T$ are nonempty, at most one of the sets $S \backslash T, T \backslash S, S \cap T$ can be empty. If all three are nonempty, then by above we see that $\operatorname{Pr}\left[A_{S} \cap A_{T}\right]=2 \cdot \frac{1}{8}=\frac{1}{4}=\operatorname{Pr}\left[A_{S}\right] \operatorname{Pr}\left[A_{T}\right]$. If only two are nonempty, say $S \backslash T$ and $S \cap T$ for instance, then $\operatorname{Pr}\left[A_{S} \cap A_{T}\right]=\operatorname{Pr}\left[A_{S \backslash T}\right] \operatorname{Pr}\left[A_{S \cap T}\right]=\frac{1}{4}=$ $\operatorname{Pr}\left[A_{S}\right] \operatorname{Pr}\left[A_{T}\right]$ (similarly for the other options).

Therefore, \mathcal{A} is a collection of $n=2^{k}-1$ pairwise independent and nontrivial events in Ω, which has size $|\Omega|=2^{k}=n+1$.

