These problems are from http://math.cmu.edu/~cocox/teaching/discrete20/extra.pdf
Problem 1. Let $G=(V, E)$ be a connected, weighted graph with weight function $w: E \rightarrow \mathbb{R}$. Let \mathcal{T} denote the set of all spanning trees of G and let $\mathcal{T}_{\min } \subseteq \mathcal{T}$ be the set of all min-weight spanning trees.

Build a graph $\mathcal{G}=(\mathcal{T}, \mathcal{E})$ where $\{T, F\} \in \mathcal{E}$ if there are edges $e \in E(T) \backslash E(F)$ and $f \in E(F) \backslash E(T)$ such that $F=T-e+f$ (equivalently $T=F-f+e$). Furthermore, let $\mathcal{G}_{\text {min }}$ be the subgraph of \mathcal{G} induced by $\mathcal{T}_{\text {min }}$ (i.e. $\mathcal{G}=\left(\mathcal{T}_{\min }, \mathcal{E} \cap\binom{\mathcal{T}_{\text {min }}}{2}\right)$). Prove the following:

1. For any $T, F \in \mathcal{T}$, we have $\{T, F\} \in \mathcal{E}$ if and only if $|E(T) \triangle E(F)|=2$.
2. For any $T \in \mathcal{T}$ and $T^{*} \in \mathcal{T}_{\text {min }}$, there is a path $\left(T=T_{1}, \ldots, T_{k}=T^{*}\right)$ in \mathcal{G} where $w\left(T_{i}\right) \geq w\left(T_{i+1}\right)$ for all $i \in[k-1]$.
3. For any $T \in \mathcal{T} \backslash \mathcal{T}_{\text {min }}$, there is $F \in \mathcal{T}$ with $\{T, F\} \in \mathcal{E}$ and $w(F)<w(T)$.
4. \mathcal{G} is connected.
5. $\mathcal{G}_{\text {min }}$ is connected.

Problem 2. Let $G=(V, E)$ be a weighted graph with weight function $w: E \rightarrow \mathbb{R}$. Recall that for a subgraph H, the weight of H is defined to be $w(H) \stackrel{\text { def }}{=} \sum_{e \in E(H)} w(e)$. We could additionally define the multiplicative weight of H to be $w^{*}(H) \stackrel{\text { def }}{=} \prod_{e \in E(H)} w(e)$.

Let G be a connected, weighted graph with weight function $w: E \rightarrow \mathbb{R}_{>0}$. Prove that T is a spanning tree which minimizes $w(T)$ if and only if T minimizes $w^{*}(T)$.

In other words, using the notation from Problem 1, if $\mathcal{T}_{\text {min }}^{*}$ denotes the set of all min-multiplicativeweight spanning trees, then $\mathcal{T}_{\text {min }}^{*}=\mathcal{T}_{\text {min }}$, provided all edge-weights are positive.

Problem 3. For a graph G, let $\operatorname{conn}(G)$ denote the set of connected components of G.
Let $G=(V, E)$ be a weighted graph with weight function $w: E \rightarrow \mathbb{R}$ and consider the following algorithm:

```
procedure \(\operatorname{BorŮV} \operatorname{Va}(G)\)
    \(F \leftarrow(V, \varnothing)\)
    while \(|\operatorname{conn}(F)|>1\) do
        \(F \leftarrow F+\sum_{C \in \operatorname{conn}(F)} e(C) \quad \triangleright e(C)\) is the cheapest edge with exactly one vertex in \(C\)
    end while
    return \(F\)
end procedure
```

1. Prove that if G is connected and each edge has a distinct weight, then Borůvka (G) returns a min-weight spanning tree of G.
2. Why was it necessary to assume that each edge has a distinct weight?
3. How can we fix the algorithm to handle the case wherein G contains edges of equal weights?
