These problems are from http://math.cmu.edu/~cocox/teaching/discrete20/extra.pdf

Problem 1. Let G = (V, E) be a connected, weighted graph with weight function $w: E \to \mathbb{R}$. Let \mathcal{T} denote the set of all spanning trees of G and let $\mathcal{T}_{\min} \subseteq \mathcal{T}$ be the set of all min-weight spanning trees.

Build a graph $\mathcal{G} = (\mathcal{T}, \mathcal{E})$ where $\{T, F\} \in \mathcal{E}$ if there are edges $e \in E(T) \setminus E(F)$ and $f \in E(F) \setminus E(T)$ such that F = T - e + f (equivalently T = F - f + e). Furthermore, let \mathcal{G}_{\min} be the subgraph of \mathcal{G} induced by \mathcal{T}_{\min} (i.e. $\mathcal{G} = (\mathcal{T}_{\min}, \mathcal{E} \cap \binom{\mathcal{T}_{\min}}{2})$). Prove the following:

- 1. For any $T, F \in \mathcal{T}$, we have $\{T, F\} \in \mathcal{E}$ if and only if $|E(T) \triangle E(F)| = 2$.
- 2. For any $T \in \mathcal{T}$ and $T^* \in \mathcal{T}_{\min}$, there is a path $(T = T_1, \ldots, T_k = T^*)$ in \mathcal{G} where $w(T_i) \ge w(T_{i+1})$ for all $i \in [k-1]$.
- 3. For any $T \in \mathcal{T} \setminus \mathcal{T}_{\min}$, there is $F \in \mathcal{T}$ with $\{T, F\} \in \mathcal{E}$ and w(F) < w(T).
- 4. \mathcal{G} is connected.
- 5. \mathcal{G}_{\min} is connected.

Problem 2. Let G = (V, E) be a weighted graph with weight function $w \colon E \to \mathbb{R}$. Recall that for a subgraph H, the weight of H is defined to be $w(H) \stackrel{\text{def}}{=} \sum_{e \in E(H)} w(e)$. We could additionally define the *multiplicative weight* of H to be $w^*(H) \stackrel{\text{def}}{=} \prod_{e \in E(H)} w(e)$.

Let G be a connected, weighted graph with weight function $w \colon E \to \mathbb{R}_{>0}$. Prove that T is a spanning tree which minimizes w(T) if and only if T minimizes $w^*(T)$.

In other words, using the notation from Problem 1, if \mathcal{T}_{\min}^* denotes the set of all min-multiplicativeweight spanning trees, then $\mathcal{T}_{\min}^* = \mathcal{T}_{\min}$, provided all edge-weights are positive.

Problem 3. For a graph G, let conn(G) denote the set of connected components of G.

Let G = (V, E) be a weighted graph with weight function $w \colon E \to \mathbb{R}$ and consider the following algorithm:

procedure BORŮVKA(G) $F \leftarrow (V, \emptyset)$ while $|\operatorname{conn}(F)| > 1$ do $F \leftarrow F + \sum_{C \in \operatorname{conn}(F)} e(C)$ $\triangleright e(C)$ is the cheapest edge with exactly one vertex in Cend while return Fend procedure

- 1. Prove that if G is connected and each edge has a distinct weight, then BORUVKA(G) returns a min-weight spanning tree of G.
- 2. Why was it necessary to assume that each edge has a distinct weight?
- 3. How can we fix the algorithm to handle the case wherein G contains edges of equal weights?