Cubical sets

CLIVE NEWSTEAD

Contents

1	The	cube category	1
2	Cubical sets and their basic properties		4
	2.1	Definition and examples	4
	2.2	Geometric realisation	6
	2.3	Kan condition	10
Aŗ	Appendices		
A	A Category theory		12
	A.1	Dinatural transformations, ends and coends	12
Re	References		

 $Please \ {\tt send} \ {\tt comments} \ {\tt and} \ {\tt corrections} \ {\tt to} \ {\tt cnewstead@cmu.edu}.$

1 The cube category

I will give three definitions of the cube category in decreasing order of concreteness. The first is a definition as a category of 'concrete' cubes and maps between them; the second is a similar definition, which is more commonplace; and the third is a snappy category theoretic definition. The first definition lets us really get a picture of what is happening, and makes the definition of *geometric realisation* easy to understand. The third definition is completely abstract and drives the point home that what we are doing is in some way 'correct'.

First definition: cubes

The first definition appears in [Ant02]. Let I denote the interval [0,1]. For $n \ge 0$, the *n*-cube I^n is simply the product

$$I^n = \underbrace{I \times I \times \dots \times I}_{n \text{ times}} \subseteq \mathbb{R}^n$$

For example, I^0 is a point, I^1 is a line, I^2 is a (filled) square, I^3 is a cube, and so on. The topological structure of *n*-cubes plays no part in the definition of cubical sets, but it will facilitate the definition of the so-called *geometric realisation* later on (Definition 2.4).

Definition 1.1. A face map is a map $\delta_i^{\varepsilon}(n): I^n \to I^{n+1}$, defined by

$$\delta_i^{\varepsilon}(n)(x_1,\ldots,x_n) = (x_1,\ldots,x_{i-1},\varepsilon,x_i,\ldots,x_n)$$

where $\varepsilon \in \{0, 1\}$ and $1 \le i \le n$. When n is clear from context we will suppress it.

Intuitively, a face map maps the *n*-cube I^n to some *n*-dimensional face $\delta_i^{\varepsilon}(I^n)$ of the (n+1)cube. The direction that $\delta_i^{\varepsilon}(I^n)$ points is determined by *i*, and the position is determined by ε .

Definition 1.2. A degeneracy map is a map $e_i(n): I^n \to I^{n-1}$, defined by

 $e_i(n)(x_1,\ldots,x_n) = (x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)$

where $1 \leq i \leq n$. When n is clear from context we will suppress it.

Intuitively, a degeneracy map flattens the cube along a dimension specified by i.

Proposition 1.3. Given $n \ge 0$ and i < j, the following diagrams commute

Moreover the face and degeneracy maps interact in the following ways:

In particular, the cubes equipped with these maps forms a category.

Definition 1.4. The *cube category* \square is the subcategory of Top defined by

- $\operatorname{ob}(\mathfrak{D}) = \{I^n : n < \omega\}$
- $mor(\square)$ is generated by the face and degeneracy maps

A corollary of Proposition 1.3 is that any morphism $\lambda : I^n \to I^m$ in \square can be written uniquely as a composite of face and degeneracy maps

$$\lambda = \delta_{i_k}^{\varepsilon_k} \circ \cdots \circ \delta_{i_1}^{\varepsilon_1} \circ e_{j_1} \circ \cdots \circ e_{j_\ell} : I^n \to \cdots \to I^{n-\ell} \to \cdots \to I^{n-\ell+k} = I^m$$

where $i_1 < \cdots < i_k$ and $j_1 < \cdots < j_\ell$, and $\varepsilon_i \in \{0, 1\}$ for each *i*.

Second definition: sequences

An alternative but very similar definition is as follows. Now an *n*-cube is the set $2^n = \{0, 1\}^n$ of sequences of 0s and 1s of length *n*. Face and degeneracy maps are defined as in the first definition, and satisfy the same properties as in 1.3.

Definition 1.5. The *cube category* \square is the subcategory of **Set** defined by

- $\operatorname{ob}(\operatorname{\mathfrak{D}}) = \{2^n : n < \omega\}$
- $mor(\square)$ is generated by the face and degeneracy maps

Since this definition is so similar to Definition 1.4, I won't dwell on it much further, but I will point out some niceties:

- The face map δ_i^{ε} can now be described as 'inserting ε into the *i*th coordinate'.
- The degeneracy map e_i can now be described as 'erasing the i^{th} coordinate'.
- In this formulation, everything is a concrete finite object, so is more amenable to computation than Definition 1.4.

Third definition: abstract nonsense

This is the definition given on nLab.

Definition 1.6. The *cube category* is the initial strict monoidal category $(\square, \otimes, 1)$ equipped with

- an object int ('interval')
- morphisms $\iota_0, \iota_1 : \mathbf{1} \to \text{int}$ ('inclusions of end-points')
- a map $p : int \rightarrow 1$ ('projection')

satisfying $p \circ \iota_0 = p \circ \iota_1 = \mathsf{id}_1$.

The definition has the virtue of being abstract: we don't rely on the category of sets (or topological spaces) in order to construct \square this way. We have an abstract interval ('1-cube') with abstract endpoints. We obtain the '*n*-cube' as $int^{\otimes n}$. Then we obtain face and degeneracy maps as

$$\delta_i^{\varepsilon} = (\mathsf{id}^{\otimes (i-1)} \otimes \iota_{\varepsilon} \otimes \mathsf{id}^{\otimes (n+1-i)}) \circ u_i(n)^{-1}, \quad e_i = u_i(n-1) \circ (\mathsf{id}^{\otimes (i-1)} \otimes p \otimes \mathsf{id}^{\otimes (n-i)})$$

where $u_i(n) : \operatorname{int}^{\otimes (i-1)} \otimes \mathbf{1} \otimes \operatorname{int}^{\otimes (n+1-i)} \cong \operatorname{int}^{\otimes n}$ is the obvious isomorphism.

Theorem 1.7. Definitions 1.4, 1.5 and 1.6 are equivalent.

Proof. The equivalence of Definitions 1.4 and 1.5 is clear.

 $(1.4) \rightarrow (1.6)$. Suppose \square is defined as in Definition 1.4. We can define a monoidal structure on \square by setting $I^n \otimes I^m = I^{n+m}$ and $\mathbf{1} = I^0$. This defines an initial strict monoidal category. Define int = I^1 . The maps

$$\iota_0 = \delta_0^0 : I^0 \to I^1, \quad \iota_1 = \delta_0^1 : I^0 \to I^1, \quad p = e_1 : I^1 \to I^0$$

clearly satisfy the requirements of Definition 1.4.

 $(1.6) \rightarrow (1.4)$. Suppose \square is defined as in Definition 1.6. Defining \square' as in 1.4 yields the structure of an initial strict monoidal category as above, and hence $\square' \cong \square$. It is easy to check that the new face and degeneracy maps, as defined above, are transferred across the isomorphism appropriately.

2 Cubical sets and their basic properties

Fix your favourite definition of \square from Section 1. For the sake of notation, we'll write [n] for the *n*-cube in \square , and we'll write $\delta_i^{\varepsilon}(n) : [n] \to [n+1]$ and $e_i(n) : [n] \to [n-1]$ for the face and degeneracy maps, respectively.

2.1 Definition and examples

Definition 2.1. A *cubical set* is a presheaf on \square , i.e. a functor $X : \square^{\text{op}} \to \mathsf{Set}$. The category of *cubical sets*, denoted cSet , has cubical sets as objects and natural transformations between them as morphisms.

For a cubical set X, write $X_n = X([n])$. Given $\lambda : [n] \to [m]$ we'll write λ_X^* to denote $X(\lambda)$. When X is clear from context, we'll just write λ^* .

Let's examine this definition more closely and see what these objects look like.

- We can think of X as being a space, characterised by how cubes are mapped into it.
- We can think of each $\sigma \in X_n$ as being an *n*-cube in X.
- Each face map $\delta_i^{\varepsilon}: [n] \to [n+1]$ induces a function

$$\partial_i^{\varepsilon} := (\delta_i^{\varepsilon})^* : X_{n+1} \to X_n$$

which takes an *n*-cube and collapses it onto its (n-1)-face determined by *i* and ε , forgetting the rest of the structure.

• Each degeneracy map $e_i: [n] \to [n-1]$ induces a function

$$\mu_i := e_i^* : X_{n-1} \to X_n$$

which takes an (n-1)-cube x to the n-cube built from two copies of x, glued together with identities along dimension i.

A morphism θ : X → Y in cSet is a collection of functions θ_n : X_n → Y_n making the following square commute for all □-morphisms λ : [n] → [m]

In other words, θ is a collection of functions on cubes which preserve dimension, and respect the face and degeneracy maps.

What follows are some important examples of cubical sets.

Example 2.2. The standard *n*-cube \square^n is defined to be the representable functor

$$\square^n = y[n] = \operatorname{Hom}_{\square}(-, [n]) : \square^{\operatorname{op}} \to \mathsf{Set}$$

where y is the Yoneda embedding $\square \to \mathsf{cSet}$.

Thus $\mathbb{D}_m^n = \{ \text{morphisms } [m] \to [n] \} \text{ and } \lambda^*(f) = f \circ \lambda.$

Example 2.3. Let A be a topological space. The singular cubical set S(A) of A is defined by

 $S(A)_n = \{ \text{continuous maps } I^n \to A \}$

and, given $\lambda: I^n \to I^m$ and $\sigma: I^m \to A$, we define

$$\lambda^*(\sigma) = \sigma \circ \lambda : I^n \to A$$

It is easy to verify that S(A) defines a cubical set: if we have $I^n \xrightarrow{\lambda_1} I^m \xrightarrow{\lambda_2} I^k$ and $\sigma: I^m \to A$ then

$$(\lambda_2 \circ \lambda_1)^*(\sigma) = \sigma \circ (\lambda_2 \circ \lambda_1) = (\sigma \circ \lambda_2) \circ \lambda_1 = (\lambda_1^* \circ \lambda_2^*)(\sigma)$$

and clearly $(\mathsf{id}_{I^n})^* = \mathsf{id}_{S(A)_n}$, so S(A) is a contravariant functor.

Note that here we do use the topological structure on I^n .

2.2 Geometric realisation

As mentioned before, we can think of a cubical set as a space. This idea is made concrete by introducing the idea of the geometric realisation of a cubical set.

Definition 2.4. Let X be a cubical set. The *geometric realisation* of X is the topological space |X| defined by

$$|X| = \left(\coprod_{n < \omega} X_n \times I^n\right) \Big/ \sim$$

where \sim is the equivalence relation defined by

$$\underbrace{(\lambda^*(\sigma), t)}_{\in X_n \times I^n} \sim \underbrace{(\sigma, \lambda(t))}_{\in X_m \times I^m} \text{ for all } m, n < \omega, \ \sigma \in X_m, \ t \in I^n, \ \lambda : I^n \to I^m$$

and each X_n is equipped with the discrete topology.

Now we really *are* mapping cubes into spaces! The space |X| is built from lots of cubes, one *n*-cube $\{\sigma\} \times I^n$ for each $\sigma \in X_n$, with the equivalence relation ~ taking care of face relations.

Proposition 2.5. For each $n \in \mathbb{N}$, $|\square^n| \cong I^n$.

Proof. For all $\sigma: I^k \to I^n$ and all $t \in I^k$ we have

$$(\sigma, t) = (\sigma^*(\mathsf{id}_{I^n}), t) \sim (\mathsf{id}_{I^n}, \sigma(t))$$

So the map $(\sigma, t) \mapsto \sigma(t)$ defines a homeomorphism $|\mathbb{D}^n| \cong I^n$.

Theorem 2.6. Example 2.3 and Definition 2.4 give rise to functors

$$S: \mathsf{Top} \to \mathsf{cSet}, \quad |-|: \mathsf{cSet} \to \mathsf{Top}$$

Moreover, there is an adjunction $(|-| \dashv S)$.

Proof. S defines a functor. Given $f: A \to B$ in Top define $S(f): S(A) \to S(B)$ by

$$S(f)_n(\sigma) = f \circ \sigma$$

Given $\lambda: I^n \to I^m$ and $\sigma: I^m \to X$ we then have

$$S(f)_n(\lambda_A^*(\sigma)) = S(f)_n(\sigma \circ \lambda) = f \circ (\sigma \circ \lambda) = (f \circ \sigma) \circ \lambda = \lambda_B^*(f \circ \sigma) = \lambda_B^*(S(f)_m(\sigma))$$

so S(f) is a natural transformation. It can be easily verified that $S(f \circ f') = S(f) \circ S(f')$ by pasting together the appropriate squares.

|-| defines a functor. Given $\theta: X \to Y$ in cSet and $(\sigma, t) \in X_n \times I^n$ define

$$|\theta|(\sigma,t) = (\theta_n(\sigma),t)$$

This is well-defined, since

$$\theta(\sigma,\lambda(t)) = (\theta_n(\sigma),\lambda(t)) = (\lambda^*(\theta_n(\sigma)),t) = (\theta_m(\lambda^*(\sigma)),t) = \theta(\lambda^*(\sigma),t)$$

so θ respects \sim . It is clear that $|\theta \circ \theta'| = |\theta| \circ |\theta'|$ and $|1_X| = 1_{|X|}$ using the properties of natural transformations, e.g. $(\theta \circ \theta')_n = \theta_n \circ \theta'_n$.

Unit of the adjunction. For a cubical set X define $\eta_X : X \to S|X|$ as follows: for each n and each $\sigma \in X_n$, define

$$(\eta_X)_n(\sigma) = \widehat{\sigma}, \text{ where } \widehat{\sigma}(t) = (\sigma, t) \text{ for } t \in I^n$$

Note that $(\eta_X)_n$ defines a natural transformation: if $\lambda : I^n \to I^m$ in $\mathfrak{D}, \sigma \in X_m$ and $t \in I^n$ then

$$(\eta_Y)_n(\lambda^*(\sigma))(t) = \widehat{\lambda^*(\sigma)}(t) = (\lambda^*(\sigma), t) = (\sigma, \lambda(t)) = \widehat{\sigma}(\lambda(t)) = \lambda^*(\widehat{\sigma})(t) = \lambda^*((\eta_X)_m(\sigma))(t)$$

so η_X is a morphism in cSet.

For η to define a natural transformation $1_{\mathsf{cSet}} \to S|-|$ we need to following diagram to commute for all $\theta: X \to Y$ in cSet:

$$\begin{array}{c} X \xrightarrow{\eta_X} S|X| \\ \theta \\ \downarrow \\ Y \xrightarrow{\eta_Y} S|Y| \end{array}$$

Fix $n \in \mathbb{N}$, $\sigma \in X_n$ and $t \in I^n$. Then

$$S|\theta|_n((\eta_X)_n(\sigma))(t) = S|\theta|_n(\widehat{\sigma})(t) = (|\theta| \circ \widehat{\sigma})(t) = |\theta|(\sigma, t)$$
$$= (\theta_n(\sigma), t) = \widehat{\theta_n(\sigma)}(t) = (\eta_Y)_n(\theta_n(\sigma))(t)$$

so $S|\theta| \circ \eta_X = \eta_Y \circ \theta$ and η is natural.

Counit of the adjunction. For a topological space A define $\varepsilon_A : |S(A)| \to A$ by

$$\varepsilon_A(\sigma, t) = \sigma(t)$$

Then ε_A is well-defined since

$$\varepsilon_A(\lambda^*(\sigma), t) = \lambda^*(\sigma)(t) = \sigma(\lambda(t)) = \varepsilon_A(\sigma, \lambda(t))$$

For ε to define a natural transformation $|S(-)| \to 1_{\mathsf{Top}}$ we need to following diagram to commute for all $f: A \to B$ in Top:

Fix $\sigma: I^n \to A$ and $t \in I^n$. Then

$$f(\varepsilon_A(\sigma,t)) = f(\sigma(t)) = (f \circ \sigma)(t) = \varepsilon_B(f \circ \sigma, t) = \varepsilon_B(|S(f)|_n(\sigma), t) = \varepsilon_B(|S(f)|(\sigma, t))$$

so $f \circ \varepsilon_A = \varepsilon_B \circ |S(f)|$ and ε is a natural transformation.

Triangle identities. To complete the proof we need to prove that the triangle identities hold:

For the first, let $\sigma: I^n \to A$ and $t \in I^n$; then

$$(S\varepsilon_A)_n((\eta_{SA})_n(\sigma))(t) = (S\varepsilon_A)_n(\widehat{\sigma})(t) = (\varepsilon_A \circ \widehat{\sigma})(t) = \varepsilon_A(\sigma, t) = \sigma(t)$$

so $S\varepsilon_A \circ \eta_{SA} = \mathrm{id}_{SA}$.

For the second, let $(\sigma, t) \in X_n \times I^n$. Then

$$\varepsilon_{|X|}(|\eta_X|(\sigma,t)) = \varepsilon_{|X|}((\eta_X)_n(\sigma),t) = \varepsilon_{|X|}(\widehat{\sigma},t) = \widehat{\sigma}(t) = (\sigma,t)$$

so $\varepsilon_{|X|} \circ |\eta_X| = \mathsf{id}_{|X|}$.

Thus there is an adjunction $(|-| \dashv S)$.

TL;DR. A summary of details given in the proof is as follows:

• The functor $|-|: \mathsf{cSet} \to \mathsf{Top}$ is defined by

$$- |X| = \left(\coprod_{n \in \mathbb{N}} X_n \times I^n \right) / \left((\lambda^*(\sigma), t) \sim (\sigma, \lambda(t)) \right) \\ - |\theta|(\sigma, t) = (\theta_n(\sigma), t)$$

• The functor $S : \mathsf{Top} \to \mathsf{cSet}$ is defined by

$$- S(A)_n = \{ \text{continuous functions } I^n \to A \}$$

$$- S(f)_n(\sigma) = f \circ \sigma \text{ for } \sigma : I^n \to A$$

• The unit $\eta: 1_{\mathsf{cSet}} \to S|-|$ is defined by

$$(\eta_X)_n(\sigma) = \widehat{\sigma}, \text{ where } \widehat{\sigma}(t) = (\sigma, t) \text{ for } \sigma \in X_n, t \in I^n$$

• The counit $\varepsilon : |S(-)| \to 1_{\mathsf{Top}}$ is defined by

$$\varepsilon_A(\sigma, t) = \sigma(t)$$

Given a cubical set X and a space A, this adjunction gives us a natural correspondence between maps $X \to SA$ and $|X| \to A$ as follows:

• $\theta: X \to SA$ corresponds with $\overline{\theta}: |X| \to SA$, where for $\sigma \in X_n$ and $t \in I^n$ we define

$$\bar{\theta}(\sigma, t) = \theta_n(\sigma)(t)$$

• $f: |X| \to A$ corresponds with $\overline{f}: X \to SA$, where for $n \in \mathbb{N}$ we define

$$\bar{f}_n(\sigma)(t) = f(\sigma, t)$$

Thus the adjunction gives us a kind of currying and uncurrying operation.

There is an abstract definition of geometric realisation, which doesn't rely on encoding any topological structure into the cube category \square . First we need to define a new functor.

Definition 2.7. Given a cubical set X, define the functor $X \cdot I : \square^{\text{op}} \times \square \to \text{Top}$ to be the composite

$$\square^{\mathrm{op}} \times \square \xrightarrow{X \times I} \mathsf{Set} \times \mathsf{Top} \xrightarrow{\mathsf{disc} \times \mathsf{id}} \mathsf{Top} \times \mathsf{Top} \xrightarrow{\mathsf{prod}} \mathsf{Top}$$

where

- $I: \square \to \mathsf{Top}$ is the functor taking the *n*-cube in \square to I^n
- disc : Set \rightarrow Top is the functor that equips a set with the discrete topology
- prod : Top \times Top \rightarrow Top is the functor that takes two spaces to their product, with the product topology

In particular, if $[m], [n] \in \square$ then $(X \cdot I)([m], [n]) = X_m \times I^n$.

Notice that if we use Definition 1.4 of \square then I is just the inclusion functor $\square \hookrightarrow \mathsf{Top}$.

Definition 2.8. Let X be a cubical set. The geometric realisation of X is the coend

$$|X| = \int^{\textcircled{}} X \cdot I$$

Spelling this out (see Appendix A.1): |X| is a topological space equipped with, for each n, a map $\iota_n : X_n \times I^n \to |X|$ such that, for all $\lambda : I^n \to I^m$ in \mathfrak{D} , the following diagram is a pushout:

This is precisely the assertion that |X| is the coproduct of the $X_n \times I^n$, identifying $(\lambda^*(\sigma), t)$ and $(\sigma, \lambda(t))$ for all $\sigma \in X_m$ and $t \in I^n$.

2.3 Kan condition

Definition 2.9. A cubical subset of a cubical set X is a cubical set Y such that $Y_n \subseteq X_n$ for each n, inheriting the same face and degeneracy maps. That is, given a face map $\delta^{\varepsilon} : I^n \to I^{n+1}$ we have $\partial_i^{\varepsilon}[Y_{n+1}] \subseteq Y_n$, and given a degeneracy map $e_i : I^n \to I^{n-1}$ we have $\mu_i[Y_{n-1}] \subseteq Y_n$.

If Y is a cubical subset of X, we write $Y \subseteq X$. Note that \subseteq defines a partial order on the set of cubical subsets of X.

Definition 2.10. Let X be a cubical set and $A \subseteq \bigcup_{n < \omega} X_n$ be a set of cubes in X. The cubical subset of X generated by A, denoted $\langle A \rangle$, is the \subseteq -least cubical subset of X containing A.

The purpose of these definitions is to translate the notion of *horn* from simplicial sets into the language of cubical sets.

Definition 2.11. Fix n and let $1 \leq i \leq n$ and $\varepsilon \in \{0,1\}$. The (i,ε) -box of \mathbb{D}^n , denoted $\bigcap_{i,\varepsilon}^n$, is defined by

$$\sqcap_{i,\varepsilon}^{n} = \langle \{ \delta_{j}^{\omega} : I^{n-1} \to I^{n} \mid (j,\omega) \neq (i,\varepsilon) \} \rangle$$

That is, $\sqcap_{i,\varepsilon}^n$ is the cubical subset of \square^n generated by all the face maps except for δ_i^{ε} . This intuition is made concrete by taking the geometric realisation:

Proposition 2.12. The geometric realisation $|\Box_{i,\varepsilon}^n|$ is the union of the (n-1)-faces of the standard *n*-cube, save for the face determined by (i, ε) .

Definition 2.13. A cubical set X is Kan (or satisfies the Kan condition) if every map $f: \square_{i,\varepsilon}^n \to X$ extends to a map $\widehat{f}: \square^n \to X$.

Appendices

A Category theory

A.1 Dinatural transformations, ends and coends

Let \mathcal{C} and \mathcal{D} be categories and $F, G : \mathcal{C}^{\mathrm{op}} \to \mathcal{C} \to \mathcal{D}$ be functors.

Definition A.1. A dinatural transformation $\alpha : F \to G$ is a collection of \mathcal{D} -morphisms $\alpha_A : F(A, A) \to G(A, A)$ for \mathcal{D} -objects A, such that for each $f : A \to B$ in \mathcal{C} the following diagram commutes:

Every natural transformation $\eta: F \to G$ gives rise to a dinatural transformation $\alpha: F \to G$ via $\alpha_A = \eta_{(A,A)}$.

In what follows, given categories \mathcal{C}, \mathcal{D} and a \mathcal{D} -object B, [B] will the constant functor $\mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to \mathcal{D}$ with value B on morphisms and id_B on morphisms.

Definition A.2. Let $F : \mathcal{C}^{\text{op}} \times \mathcal{C} \to \mathcal{D}$ be a functor. The *end* of F is a \mathcal{D} -object $\int_{\mathcal{C}} F$ together with a universal dinatural transformation $\alpha : [\int_{\mathcal{C}} F] \to F$, i.e. such that if $\beta : [X] \to F$ is another dinatural transformation, with X a \mathcal{D} -object, then there is a unique \mathcal{D} -morphism $u : X \to \int_{\mathcal{C}} F$ such that $\beta_A = \alpha_A \circ u$ for all \mathcal{C} -objects A.

The corresponding dinatural transformation diagram, for $f: A \to B$ in \mathcal{C} , is

By collapsing the identity maps, the universal property is thus the assertion that the following diagram commutes, with u unique:

For instance, when $\mathcal{D} = \mathsf{Set}$, we have

$$\int_{\mathcal{C}} F = \{a : \operatorname{ob}(\mathcal{C}) \to \mathsf{Set} \mid F(\mathsf{id}, f)(a(A)) = F(f, \mathsf{id})(a(B)) \text{ for all } f : A \to B\}$$
$$\subseteq \prod_{A \in \operatorname{ob}(\mathcal{C})} F(A, A)$$

and α_A is the projection $\int_{\mathcal{C}} F \to F(A, A)$.

Definition A.3. Let $F : \mathcal{C}^{\text{op}} \times \mathcal{C} \to \mathcal{D}$ be a functor. The *coend* of F is a \mathcal{D} -object $\int^{\mathcal{C}} F$ together with a universal dinatural transformation $\alpha : F \to \left[\int^{\mathcal{C}} F\right]$, i.e. such that if $\beta : F \to [X]$ is another dinatural transformation, with X a \mathcal{D} -object, then there is a unique \mathcal{D} -morphism $u : \int^{\mathcal{C}} F \to X$ such that $\beta_A = u \circ \alpha_A$ for all \mathcal{C} -objects A.

The corresponding dinatural transformation diagram, for $f: A \to B$ in \mathcal{C} , is

By collapsing the identity maps, the universal property is thus the assertion that the following diagram commutes, with u unique:

For instance, when $\mathcal{D} = \mathsf{Set}$ (or Top), we have

$$\int^{\mathcal{C}} F = \prod_{A \in \operatorname{ob}(\mathcal{C})} F(A, A) \Big/ \sim$$

where \sim is the lease equivalence relation satisfying $F(f, \mathrm{id})(x) = F(\mathrm{id}, f)(x)$ for all $x \in F(B, A)$ and $f: A \to B$; and α_A is the inclusion $F(A, A) \hookrightarrow \int^{\mathcal{C}} F$.

References

- [Ant02] Rosa Antolini. Geometric realisations of cubical sets with connections, and classifying spaces of categories. *Applied Categorical Structures*, 10(5):481–494, 2002.
- [CH13] Thierry Coquand and Simon Huber. A model of type theory in cubical sets. 2013.
- [Jar02] J. F. Jardine. Cubical homotopy theory: A beginning. Technical report, 2002.