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1 The cube category

I will give three definitions of the cube category in decreasing order of concreteness. The
first is a definition as a category of ‘concrete’ cubes and maps between them; the second
is a similar definition, which is more commonplace; and the third is a snappy category
theoretic definition. The first definition lets us really get a picture of what is happening,
and makes the definition of geometric realisation easy to understand. The third definition
is completely abstract and drives the point home that what we are doing is in some way
‘correct’.

First definition: cubes

The first definition appears in [Ant02]. Let I denote the interval [0, 1]. For n ≥ 0, the
n-cube In is simply the product

In = I × I × · · · × I︸ ︷︷ ︸
n times

⊆ Rn

For example, I0 is a point, I1 is a line, I2 is a (filled) square, I3 is a cube, and so on. The
topological structure of n-cubes plays no part in the definition of cubical sets, but it will
facilitate the definition of the so-called geometric realisation later on (Definition 2.4).

Definition 1.1. A face map is a map δεi (n) : In → In+1, defined by

δεi (n)(x1, . . . , xn) = (x1, . . . , xi−1, ε, xi, . . . , xn)

where ε ∈ {0, 1} and 1 ≤ i ≤ n. When n is clear from context we will suppress it.

Intuitively, a face map maps the n-cube In to some n-dimensional face δεi (I
n) of the (n+1)-

cube. The direction that δεi (I
n) points is determined by i, and the position is determined

by ε.

Definition 1.2. A degeneracy map is a map ei(n) : In → In−1, defined by

ei(n)(x1, . . . , xn) = (x1, . . . , xi−1, xi+1, . . . , xn)

where 1 ≤ i ≤ n. When n is clear from context we will suppress it.

Intuitively, a degeneracy map flattens the cube along a dimension specified by i.

Proposition 1.3. Given n ≥ 0 and i < j, the following diagrams commute
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In In+1

In+1 In+2

δεi

δωj−1 δωj

δεi

In+2 In+1

In+1 In

ej

ei

ej−1

ei

Moreover the face and degeneracy maps interact in the following ways:

In

In+1 In

In−1

δεi

ej

(i < j)

ej−1

δεi

In

In+1 In

δεi

ej

(i = j)

id
In

In+1 In

In−1

δεi

ej

(i > j)

ej

δεi−1

In particular, the cubes equipped with these maps forms a category.

Definition 1.4. The cube category � is the subcategory of Top defined by

• ob(�) = {In : n < ω}

• mor(�) is generated by the face and degeneracy maps

A corollary of Proposition 1.3 is that any morphism λ : In → Im in � can be written
uniquely as a composite of face and degeneracy maps

λ = δεkik ◦ · · · ◦ δ
ε1
i1
◦ ej1 ◦ · · · ◦ ej` : In → · · · → In−` → · · · → In−`+k = Im

where i1 < · · · < ik and j1 < · · · < j`, and εi ∈ {0, 1} for each i.

Second definition: sequences

An alternative but very similar definition is as follows. Now an n-cube is the set 2n = {0, 1}n
of sequences of 0s and 1s of length n. Face and degeneracy maps are defined as in the first
definition, and satisfy the same properties as in 1.3.

Definition 1.5. The cube category � is the subcategory of Set defined by
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• ob(�) = {2n : n < ω}

• mor(�) is generated by the face and degeneracy maps

Since this definition is so similar to Definition 1.4, I won’t dwell on it much further, but I
will point out some niceties:

• The face map δεi can now be described as ‘inserting ε into the ith coordinate’.

• The degeneracy map ei can now be described as ‘erasing the ith coordinate’.

• In this formulation, everything is a concrete finite object, so is more amenable to
computation than Definition 1.4.

Third definition: abstract nonsense

This is the definition given on nLab.

Definition 1.6. The cube category is the initial strict monoidal category (� ,⊗, 1) equipped
with

• an object int (‘interval’)

• morphisms ι0, ι1 : 1→ int (‘inclusions of end-points’)

• a map p : int→ 1 (‘projection’)

satisfying p ◦ ι0 = p ◦ ι1 = id1.

The definition has the virtue of being abstract: we don’t rely on the category of sets (or
topological spaces) in order to construct � this way. We have an abstract interval (‘1-
cube’) with abstract endpoints. We obtain the ‘n-cube’ as int⊗n. Then we obtain face and
degeneracy maps as

δεi = (id⊗(i−1) ⊗ ιε ⊗ id⊗(n+1−i)) ◦ ui(n)−1, ei = ui(n− 1) ◦ (id⊗(i−1) ⊗ p⊗ id⊗(n−i))

where ui(n) : int⊗(i−1) ⊗ 1⊗ int⊗(n+1−i) ∼= int⊗n is the obvious isomorphism.

Theorem 1.7. Definitions 1.4, 1.5 and 1.6 are equivalent.

Proof. The equivalence of Definitions 1.4 and 1.5 is clear.
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(1.4)→(1.6). Suppose � is defined as in Definition 1.4. We can define a monoidal structure
on � by setting In⊗Im = In+m and 1 = I0. This defines an initial strict monoidal category.
Define int = I1. The maps

ι0 = δ00 : I0 → I1, ι1 = δ10 : I0 → I1, p = e1 : I1 → I0

clearly satisfy the requirements of Definition 1.4.

(1.6)→(1.4). Suppose � is defined as in Definition 1.6. Defining � ′ as in 1.4 yields the
structure of an initial strict monoidal category as above, and hence � ′ ∼= � . It is easy to
check that the new face and degeneracy maps, as defined above, are transferred across the
isomorphism appropriately.

2 Cubical sets and their basic properties

Fix your favourite definition of � from Section 1. For the sake of notation, we’ll write [n]
for the n-cube in � , and we’ll write δεi (n) : [n] → [n + 1] and ei(n) : [n] → [n − 1] for the
face and degeneracy maps, respectively.

2.1 Definition and examples

Definition 2.1. A cubical set is a presheaf on � , i.e. a functor X : �op → Set. The cat-
egory of cubical sets, denoted cSet, has cubical sets as objects and natural transformations
between them as morphisms.

For a cubical set X, write Xn = X([n]). Given λ : [n] → [m] we’ll write λ∗X to denote
X(λ). When X is clear from context, we’ll just write λ∗.

Let’s examine this definition more closely and see what these objects look like.

• We can think of X as being a space, characterised by how cubes are mapped into it.

• We can think of each σ ∈ Xn as being an n-cube in X.

• Each face map δεi : [n]→ [n+ 1] induces a function

∂εi := (δεi )
∗ : Xn+1 → Xn

which takes an n-cube and collapses it onto its (n − 1)-face determined by i and ε,
forgetting the rest of the structure.
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• Each degeneracy map ei : [n]→ [n− 1] induces a function

µi := e∗i : Xn−1 → Xn

which takes an (n−1)-cube x to the n-cube built from two copies of x, glued together
with identities along dimension i.

• A morphism θ : X → Y in cSet is a collection of functions θn : Xn → Yn making the
following square commute for all �-morphisms λ : [n]→ [m]

Xm Xn

Ym Yn

λ∗X

θm θn

λ∗Y

In other words, θ is a collection of functions on cubes which preserve dimension, and
respect the face and degeneracy maps.

What follows are some important examples of cubical sets.

Example 2.2. The standard n-cube �n is defined to be the representable functor

�
n = y[n] = Hom� (−, [n]) : �

op → Set

where y is the Yoneda embedding � → cSet.

Thus �n
m = {morphisms [m]→ [n]} and λ∗(f) = f ◦ λ.

Example 2.3. Let A be a topological space. The singular cubical set S(A) of A is defined
by

S(A)n = {continuous maps In → A}

and, given λ : In → Im and σ : Im → A, we define

λ∗(σ) = σ ◦ λ : In → A

It is easy to verify that S(A) defines a cubical set: if we have In
λ1−→ Im

λ2−→ Ik and
σ : Im → A then

(λ2 ◦ λ1)∗(σ) = σ ◦ (λ2 ◦ λ1) = (σ ◦ λ2) ◦ λ1 = (λ∗1 ◦ λ∗2)(σ)

and clearly (idIn)∗ = idS(A)n , so S(A) is a contravariant functor.

Note that here we do use the topological structure on In.
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2.2 Geometric realisation

As mentioned before, we can think of a cubical set as a space. This idea is made concrete
by introducing the idea of the geometric realisation of a cubical set.

Definition 2.4. Let X be a cubical set. The geometric realisation of X is the topological
space |X| defined by

|X| =

(∐
n<ω

Xn × In
)/

∼

where ∼ is the equivalence relation defined by

(λ∗(σ), t)︸ ︷︷ ︸
∈Xn×In

∼ (σ, λ(t))︸ ︷︷ ︸
∈Xm×Im

for all m,n < ω, σ ∈ Xm, t ∈ In, λ : In → Im

and each Xn is equipped with the discrete topology.

Now we really are mapping cubes into spaces! The space |X| is built from lots of cubes,
one n-cube {σ} × In for each σ ∈ Xn, with the equivalence relation ∼ taking care of face
relations.

Proposition 2.5. For each n ∈ N, |�n| ∼= In.

Proof. For all σ : Ik → In and all t ∈ Ik we have

(σ, t) = (σ∗(idIn), t) ∼ (idIn , σ(t))

So the map (σ, t) 7→ σ(t) defines a homeomorphism |�n| ∼= In.

Theorem 2.6. Example 2.3 and Definition 2.4 give rise to functors

S : Top→ cSet, |−| : cSet→ Top

Moreover, there is an adjunction (|−| a S).

Proof. S defines a functor. Given f : A→ B in Top define S(f) : S(A)→ S(B) by

S(f)n(σ) = f ◦ σ

Given λ : In → Im and σ : Im → X we then have

S(f)n(λ∗A(σ)) = S(f)n(σ ◦ λ) = f ◦ (σ ◦ λ) = (f ◦ σ) ◦ λ = λ∗B(f ◦ σ) = λ∗B(S(f)m(σ))
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S(A)m S(A)n

S(B)m S(B)n

λ∗A

S(f)m S(f)n

λ∗B

so S(f) is a natural transformation. It can be easily verified that S(f ◦ f ′) = S(f) ◦ S(f ′)
by pasting together the appropriate squares.

|−| defines a functor. Given θ : X → Y in cSet and (σ, t) ∈ Xn × In define

|θ|(σ, t) = (θn(σ), t)

This is well-defined, since

θ(σ, λ(t)) = (θn(σ), λ(t)) = (λ∗(θn(σ)), t) = (θm(λ∗(σ)), t) = θ(λ∗(σ), t)

so θ respects ∼. It is clear that |θ ◦ θ′| = |θ| ◦ |θ′| and |1X | = 1|X| using the properties of
natural transformations, e.g. (θ ◦ θ′)n = θn ◦ θ′n.

Unit of the adjunction. For a cubical set X define ηX : X → S|X| as follows: for each
n and each σ ∈ Xn, define

(ηX)n(σ) = σ̂, where σ̂(t) = (σ, t) for t ∈ In

Note that (ηX)n defines a natural transformation: if λ : In → Im in � , σ ∈ Xm and t ∈ In
then

(ηY )n(λ∗(σ))(t) = λ̂∗(σ)(t) = (λ∗(σ), t) = (σ, λ(t)) = σ̂(λ(t)) = λ∗(σ̂)(t) = λ∗((ηX)m(σ))(t)

so ηX is a morphism in cSet.

For η to define a natural transformation 1cSet → S|−| we need to following diagram to
commute for all θ : X → Y in cSet:

X S|X|

Y S|Y |

ηX

θ S|θ|

ηY
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Fix n ∈ N, σ ∈ Xn and t ∈ In. Then

S|θ|n((ηX)n(σ))(t) = S|θ|n(σ̂)(t) = (|θ| ◦ σ̂)(t) = |θ|(σ, t)

= (θn(σ), t) = θ̂n(σ)(t) = (ηY )n(θn(σ))(t)

so S|θ| ◦ ηX = ηY ◦ θ and η is natural.

Counit of the adjunction. For a topological space A define εA : |S(A)| → A by

εA(σ, t) = σ(t)

Then εA is well-defined since

εA(λ∗(σ), t) = λ∗(σ)(t) = σ(λ(t)) = εA(σ, λ(t))

For ε to define a natural transformation |S(−)| → 1Top we need to following diagram to
commute for all f : A→ B in Top:

|S(A)| A

|S(B)| B

εA

|S(f)|

εB

f

Fix σ : In → A and t ∈ In. Then

f(εA(σ, t)) = f(σ(t)) = (f ◦ σ)(t) = εB(f ◦ σ, t) = εB(|S(f)|n(σ), t) = εB(|S(f)|(σ, t))

so f ◦ εA = εB ◦ |S(f)| and ε is a natural transformation.

Triangle identities. To complete the proof we need to prove that the triangle identities
hold:

SA S|SA|

SA

ηSA

SεA
id

|X| |S|X||

|X|

|ηX |

ε|X|
id

For the first, let σ : In → A and t ∈ In; then

(SεA)n((ηSA)n(σ))(t) = (SεA)n(σ̂)(t) = (εA ◦ σ̂)(t) = εA(σ, t) = σ(t)
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so SεA ◦ ηSA = idSA.

For the second, let (σ, t) ∈ Xn × In. Then

ε|X|(|ηX |(σ, t)) = ε|X|((ηX)n(σ), t) = ε|X|(σ̂, t) = σ̂(t) = (σ, t)

so ε|X| ◦ |ηX | = id|X|.

Thus there is an adjunction (|−| a S).

TL;DR. A summary of details given in the proof is as follows:

• The functor |−| : cSet→ Top is defined by

– |X| =
(∐

n∈NXn × In
)
/ ((λ∗(σ), t) ∼ (σ, λ(t)))

– |θ|(σ, t) = (θn(σ), t)

• The functor S : Top→ cSet is defined by

– S(A)n = {continuous functions In → A}
– S(f)n(σ) = f ◦ σ for σ : In → A

• The unit η : 1cSet → S|−| is defined by

(ηX)n(σ) = σ̂, where σ̂(t) = (σ, t) for σ ∈ Xn, t ∈ In

• The counit ε : |S(−)| → 1Top is defined by

εA(σ, t) = σ(t)

Given a cubical set X and a space A, this adjunction gives us a natural correspondence
between maps X → SA and |X| → A as follows:

• θ : X → SA corresponds with θ̄ : |X| → SA, where for σ ∈ Xn and t ∈ In we define

θ̄(σ, t) = θn(σ)(t)

• f : |X| → A corresponds with f̄ : X → SA, where for n ∈ N we define

f̄n(σ)(t) = f(σ, t)

Thus the adjunction gives us a kind of currying and uncurrying operation.

There is an abstract definition of geometric realisation, which doesn’t rely on encoding any
topological structure into the cube category � . First we need to define a new functor.

9



Definition 2.7. Given a cubical set X, define the functor X · I : �op × � → Top to be
the composite

�
op × �

X×I−−−→ Set× Top
disc×id−−−−→ Top× Top

prod−−→ Top

where

• I : � → Top is the functor taking the n-cube in � to In

• disc : Set→ Top is the functor that equips a set with the discrete topology

• prod : Top × Top → Top is the functor that takes two spaces to their product, with
the product topology

In particular, if [m], [n] ∈ � then (X · I)([m], [n]) = Xm × In.

Notice that if we use Definition 1.4 of � then I is just the inclusion functor � ↪→ Top.

Definition 2.8. Let X be a cubical set. The geometric realisation of X is the coend

|X| =
∫ �

X · I

Spelling this out (see Appendix A.1): |X| is a topological space equipped with, for each n,
a map ιn : Xn × In → |X| such that, for all λ : In → Im in � , the following diagram is a
pushout:

Xm × In Xn × In

Xm × Im |X|

λ∗ × id

id× λ

ιm

ιn

This is precisely the assertion that |X| is the coproduct of the Xn×In, identifying (λ∗(σ), t)
and (σ, λ(t)) for all σ ∈ Xm and t ∈ In.

2.3 Kan condition

Definition 2.9. A cubical subset of a cubical set X is a cubical set Y such that Yn ⊆ Xn

for each n, inheriting the same face and degeneracy maps. That is, given a face map
δε : In → In+1 we have ∂εi [Yn+1] ⊆ Yn, and given a degeneracy map ei : In → In−1 we have
µi[Yn−1] ⊆ Yn.
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If Y is a cubical subset of X, we write Y ⊆ X. Note that ⊆ defines a partial order on the
set of cubical subsets of X.

Definition 2.10. Let X be a cubical set and A ⊆
⋃
n<ωXn be a set of cubes in X.

The cubical subset of X generated by A, denoted 〈A〉, is the ⊆-least cubical subset of X
containing A.

The purpose of these definitions is to translate the notion of horn from simplicial sets into
the language of cubical sets.

Definition 2.11. Fix n and let 1 ≤ i ≤ n and ε ∈ {0, 1}. The (i, ε)-box of �n, denoted
uni,ε, is defined by

uni,ε = 〈{δωj : In−1 → In | (j, ω) 6= (i, ε)}〉

That is, uni,ε is the cubical subset of �n generated by all the face maps except for δεi . This
intuition is made concrete by taking the geometric realisation:

Proposition 2.12. The geometric realisation |uni,ε| is the union of the (n− 1)-faces of the
standard n-cube, save for the face determined by (i, ε).

Definition 2.13. A cubical set X is Kan (or satisfies the Kan condition) if every map
f : uni,ε → X extends to a map f̂ : �n → X.
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Appendices

A Category theory

A.1 Dinatural transformations, ends and coends

Let C and D be categories and F,G : Cop → C → D be functors.

Definition A.1. A dinatural transformation α : F → G is a collection of D-morphisms
αA : F (A,A)→ G(A,A) for D-objects A, such that for each f : A→ B in C the following
diagram commutes:

F (B,A)

F (A,A) G(A,A)

G(A,B)

F (B,B) G(B,B)

F (f, id)

αA

G(id, f)

F (id, f)

αB

G(f, id)

Every natural transformation η : F → G gives rise to a dinatural transformation α : F → G
via αA = η(A,A).

In what follows, given categories C,D and a D-object B, [B] will the constant functor
Cop × C → D with value B on morphisms and idB on morphisms.

Definition A.2. Let F : Cop × C → D be a functor. The end of F is a D-object
∫
C F

together with a universal dinatural transformation α :
[∫
C F
]
→ F , i.e. such that if β :

[X] → F is another dinatural transformation, with X a D-object, then there is a unique
D-morphism u : X →

∫
C F such that βA = αA ◦ u for all C-objects A.

The corresponding dinatural transformation diagram, for f : A→ B in C, is

∫
C F

∫
C F F (A,A)

F (A,B)

∫
C F F (B,B)

id

αA

F (id, f)

id

αB

F (f, id)
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By collapsing the identity maps, the universal property is thus the assertion that the
following diagram commutes, with u unique:

X

∫
C F F (A,A)

F (B,B) F (A,B)

αA

αB

F (f, id)

F (id, f)

βA

βB

u

For instance, when D = Set, we have∫
C
F = {a : ob(C)→ Set | F (id, f)(a(A)) = F (f, id)(a(B)) for all f : A→ B}

⊆
∏

A∈ob(C)

F (A,A)

and αA is the projection
∫
C F → F (A,A).

Definition A.3. Let F : Cop × C → D be a functor. The coend of F is a D-object∫ C
F together with a universal dinatural transformation α : F →

[∫ C
F
]
, i.e. such that if

β : F → [X] is another dinatural transformation, with X a D-object, then there is a unique

D-morphism u :
∫ C

F → X such that βA = u ◦ αA for all C-objects A.

The corresponding dinatural transformation diagram, for f : A→ B in C, is

F (B,A)

F (A,A)
∫ C

F

∫ C
F

F (B,B)
∫ C

F

F (f, id)

αA

id

F (id, f)

αB

id

By collapsing the identity maps, the universal property is thus the assertion that the
following diagram commutes, with u unique:
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F (B,A) F (A,A)

F (B,B)
∫ C

F

X

F (f, id)

F (id, f)

αB

αA
βA

βB

u

For instance, when D = Set (or Top), we have∫ C
F =

∐
A∈ob(C)

F (A,A)

/
∼

where ∼ is the lease equivalence relation satisfying F (f, id)(x) = F (id, f)(x) for all x ∈
F (B,A) and f : A→ B; and αA is the inclusion F (A,A) ↪→

∫ C
F .
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