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1. Introduction

My research interests lie mainly in set theory, in particular in forcing, large cardinals, and combinatorial
set theory. The method of forcing is ubiquitous in modern set theory and is used primarily as a tool for
proving independence results. It was first developed by Paul Cohen, who used it to prove that the Continuum
Hypothesis is independent of the usual axioms of set theory (ZFC) [2]. The technique of forcing is roughly
as follows: Given a transitive model M of ZFC and a poset P ∈M , one adjoins an object called a P-generic
filter, G, to M to create a model of ZFC, M [G], that is in a sense the smallest model of ZFC such that
M ⊆M [G] and G ∈M [G] (in non-trivial cases, G 6∈M). By altering the properties of the poset P, one can
determine to an extent what statements are true or false in the generic extension, M [G].

Much of my research involves the use of forcing to produce models of ZFC in which certain combinatorial
statements hold. One of the major themes in combinatorial set theory research is the tension that exists
between canonical inner models and incompactness phenomena on the one hand and large cardinals and
reflection principles on the other. For example, Jensen [11] showed that, if V = L, then the combinatorial
principle �κ, which is a very strong instance of incompactness, holds for every cardinal κ ≥ ω1. On the other
hand, a result of Burke and Kanamori (see [15]), implies that, if κ is a strongly compact cardinal, then �λ
fails for every cardinal λ ≥ κ. Much work has been done to explore the boundary between these two regimes
and to determine exactly which L-like combinatorial principles are consistent with reflection phenomena or
the existence of large cardinals (see, for example, [4] or [9]). In some of my research, I investigated covering
matrices, combinatorial structures introduced by Viale [18], and proved some implications and consistency
results connecting certain types of covering matrices with certain square principles. In the process, I isolated
square principles intermediate between the classical �κ and �(κ+) and analyzed the system of implications
and non-implications that exist among them.

A large part of my work focuses on singular cardinal combinatorics. Combinatorial problems about
successors of singular cardinals are inextricably bound up with questions about inner models and large
cardinals and often have significant implications for cardinal arithmetic. My results in this area include a
PCF-theoretic analysis of a model of Gitik and Sharon [10], some results about the ideal of sets carrying good
scales, and a consistency result about bounded stationary reflection at the successors of singular cardinals.

2. Covering Matrices and Squares

A combinatorial structure of particular interest in my research is known as a covering matrix.

Definition Let θ < λ be regular cardinals. D = {D(i, β) | i < θ, β < λ} is a θ-covering matrix for λ if:

(1) For all β < λ, β =
⋃
i<θD(i, β).

(2) For all β < λ and all i < j < θ, D(i, β) ⊆ D(j, β).
(3) For all β < γ < λ and all i < θ, there is j < θ such that D(i, β) ⊆ D(j, γ).

βD is the least β such that for all γ < λ and all i < θ, otp(D(i, γ)) < β. D is normal if βD < λ.
D is transitive if, for all α < β < λ and all i < θ, if α ∈ D(i, β), then D(i, α) ⊆ D(i, β).
D is uniform if for all β < λ there is i < θ such that D(j, β) contains a club in β for all j ≥ i.
Covering matrices were introduced by Viale in his proof that the Singular Cardinals Hypothesis (SCH)

follows from the Proper Forcing Axiom (PFA) [18]. In this work and in subsequent work with Sharon [16],
he isolated two important properties which can hold of covering matrices.

Definition Let θ < λ be regular cardinals, and let D be a θ-covering matrix for λ.
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(1) CP(D) holds if there is an unbounded T ⊆ λ such that for every X ∈ [T ]θ, there are i < θ and β < λ
such that X ⊆ D(i, β).

(2) S(D) holds if there is a stationary S ⊆ λ such that for every family {Sj | j < θ} of stationary subsets
of S, there are i < θ and β < λ such that, for every j < θ, Sj ∩D(i, β) 6= ∅.

The heart of Viale’s argument that PFA implies SCH consists of the following.

Theorem 2.1. (Viale [18]) Let λ > ℵ2 be a regular cardinal. PFA implies that CP(D) holds for every
ω-covering matrix D for λ.

The assertion that CP(D) or S(D) holds for all covering matrices of a particular shape can be seen as
a type of reflection principle. I investigated the failure of these principles, i.e. the existence of a covering
matrix D for which CP(D) and S(D) fail. Motivated by the case θ = ω1, λ = ω2, I first focused on κ-covering
matrices for κ+, where κ ≥ ω1 is a regular cardinal. An easy proposition yields that, if D is a transitive,
normal, uniform κ-covering matrix for κ+, then CP(D) and S(D) fail. Results of Sharon and Viale [16] show
that sufficiently strong reflection principles preclude the existence of such covering matrices. The following
theorem shows that certain square principles actually imply the existence of such covering matrices.

Theorem 2.2. (L-H [13]) Suppose κ is a regular cardinal and �κ,<κ holds. Then there is a transitive,
normal, uniform κ-covering matrix for κ+.

The following result, proved using a standard argument originally due to Baumgartner [1], shows that
the above implication is sharp in the sense that weaker square principles do not imply the existence of the
desired covering matrices.

Theorem 2.3. (L-H [13]) Suppose that, in V , κ is a regular cardinal and there is a measurable cardinal
greater than κ. Then there is a forcing extension V [G] in which κ remains a regular cardinal, �∗κ holds, and
there are no transitive, normal, uniform κ-covering matrices for κ+.

Also, the implication in 2.2 is not in general reversible.

Theorem 2.4. (L-H [13]) Suppose that, in V , κ is a regular cardinal that is not strongly inaccessible and
there is a measurable cardinal greater than κ. Then there is a forcing extension V [G] in which κ remains a
regular cardinal, there is a transitive, normal, uniform κ-covering matrix for κ+, and �κ,<κ fails.

Turning my attention to covering matrices of a more general shape, I found that certain natural strength-
enings of the principle �(λ) become relevant. We thus make the following definition.

Definition Let λ > ω1 be a regular cardinal, and let
−→
C = 〈Cα | α < λ〉 be a �(λ)-sequence.

(1) Let µ < λ be a regular cardinal. We say
−→
C is a �µ(λ)-sequence if {α < λ | otp(Cα) = µ} is

stationary in λ. We say �µ(λ) holds if there is a �µ(λ)-sequence.

(2) Let S ⊂ λ be stationary. We say
−→
C is a �(λ, S)-sequence if, for every α < λ, lim(Cα) ∩ S = ∅.

�(λ, S) holds if there is a �(λ, S)-sequence.

The following uses results of Todorčević [17] concerning minimal walks on ordinals.

Proposition 2.5. (L-H [13]) Suppose θ < λ are infinite, regular cardinals, with λ > ω1. Suppose also that
�θ(λ) holds. Then there is a θ-covering matrix for λ, D, for which CP(D) and S(D) fail.

The question naturally arises whether the strengthenings of �(λ) defined above are actually stronger than
�(λ) (or weaker than �κ, if λ = κ+.) The following implications are easily obtained.

Proposition 2.6. (L-H [13]) Let µ ≤ ν < λ be regular cardinals.

(1) If �µ(κ) holds, then there is a stationary S ⊆ Sκµ such that �(κ, S) holds.
(2) If there is a stationary S ⊆ Sκω such that �(κ, S) holds, then �ω(κ) holds.
(3) If �ν(κ) holds, then �µ(κ) holds.

In general, if λ is a successor cardinal, these are the only implications that hold. Recall that, if κ is an
infinite regular cardinal and κ < λ, then Sλκ is the set of α < λ such that cf(α) = κ.

Theorem 2.7. (L-H [13]) In V , suppose µ ≤ κ are regular cardinals and there is a measurable cardinal
greater than κ. Then there is a forcing extension V [G] in which all cardinals and cofinalities ≤ κ are
preserved, �µ(κ+) holds, and �κ,<κ fails.
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Theorem 2.8. (L-H [13]) In V , suppose µ < ν ≤ κ are regular cardinals and there is a measurable cardinal
greater than κ. Then there is a forcing extension V [G] in which all cardinals and cofinalities ≤ κ are
preserved and �µ(κ+) holds, but �ν(κ+) fails.

Theorem 2.9. (L-H [13]) Suppose V = L, κ is a regular, uncountable cardinal, and there is a Mahlo
cardinal greater than κ. Then there is a forcing extension V [G] in which all cardinals and cofinaliites ≤ κ

are preserved, there is a stationary S ⊆ Sκ+

κ such that �(κ+, S) holds, and �(κ+, T ) fails for every stationary

T ⊆ Sκ+

<κ.

Putting this all together, we obtain the following complete picture of implications and non-implications
in the case λ = ω2.

�ω1

�ω(ω2) �ω1(ω2)

∃ stationary S ⊆ Sℵ2ℵ0 (�(ω2, S)) ∃ stationary T ⊆ Sℵ2ℵ1 (�(ω2, T ))

�(ω2)

Some questions remain open in the case λ > ω2. For example:

Question Suppose µ < ν < κ are infinite regular cardinals and there is a stationary S ⊆ Sκ
+

ν such that

�(κ+, S) holds. Must there be a stationary T ⊆ Sκ+

µ such that �(κ+, T ) holds?

3. Scales in a model of Gitik and Sharon

In [10], Gitik and Sharon answer two important questions in singular cardinal combinatorics with the
following result. Recall that APκ stands for the approachability property at κ, which can be seen as a weak
square principle.

Theorem 3.1. (Gitik, Sharon [10]) Suppose that, in V , κ is a supercompact cardinal. Then there is a
forcing extension in which κ is a strong limit singular cardinal of countable cofinality, 2κ = κ++, APκ fails,
and there is A ⊆ κ such that there is a very good scale in

∏
A.

To obtain this result, Gitik and Sharon first force to make 2κ = κ+ω+2 while preserving the supercompact-
ness of κ and then force with a diagonal version of supercompact Prikry forcing. Cummings and Foreman
[3] showed that, in the model of [10], there is a B ⊆ κ such that

∏
B carries a bad scale, thus providing

another proof of the failure of APκ. In [3], Cummings and Foreman ask a number of questions regarding
scales in the Gitik-Sharon model, three of which I have addressed in my research.

Let κ be a supercompact cardinal. If λ ≤ κ is inaccessible, let A(λ) be the full-support product of
Add(λ+n, λ+ω+2) for n < ω, where Add(λ+n, λ+ω+2) is the forcing to add λ+ω+2-many Cohen subsets of
λ+n. Let P be the iteration with reverse Easton support of A(λ) for all inaccessible λ ≤ κ. In V P, let
Q be the diagonal supercompact Prikry forcing at κ defined in [10]. Let G ∗ H be P ∗ Q-generic over V .
Then, in V [G ∗H], we can completely characterize the scales that exist at κ. We first note that there is a
natural ω-sequence of inaccessible cardinals cofinal in κ that is definable from H. We denote this sequence

by 〈κn | n < ω〉. The very good scale identified in [10] lives in
∏
n<ω

κ+ω+1
n .
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Theorem 3.2. (L-H [12]) Let P ∗Q be as defined above, and let G ∗H be P ∗Q-generic over V . Then, in
V [G ∗H], the following hold:

(1) There is a scale in
∏
n<ω
i≤n

κ+in+1 of length κ++ such that every α < κ++ with ω < cf(α) < κ is very

good.

(2) Suppose σ ∈ ωω and, for all n < ω, σ(n) ≥ n. There is a bad scale of length κ+ in
∏
n<ω

κ+σ(n)n .

(3) In V [G], let σ : ω → κ be such that, for all n < ω, σ(n) ≥ ω+ 1. Then, in V [G ∗H], there is a scale

of length κ++ in
∏
n<ω

κ+σ(n)+1
n such that every α < κ++ with ω < cf(α) < κ is very good.

By interleaving Levy collapses into the diagonal supercompact Prikry forcing and performing one more
Levy collapse at the end, we can obtain a model in which there is a very sharp dividing line between good
and bad scales at the relatively small cardinal ℵω2 .

Theorem 3.3. (L-H [12]) Let κ be a supercompact cardinal. Then there is a forcing extension in which
κ = ℵω2 and, for every σ ∈ ωω,

(1) If σ(n) < n+ 2 for all but finitely many n < ω, then
∏
n<ω

ℵω·(n+1)+σ(n) carries a very good scale.

(2) If σ(n) ≥ n+ 2 for infinitely many n < ω, then
∏
n<ω

ℵω·(n+1)+σ(n) carries a bad scale.

The second question of Cummings and Foreman addressed in my research regards the classification of bad
points in the bad scales of the Gitik-Sharon model. To state the results, we need the following notion.

Definition Let A be a set of regular cardinals and let
−→
f = 〈fα | α < λ〉 be a <∗-increasing sequence of

functions in
∏
A. g ∈ AOn is an exact upper bound (eub) for

−→
f if

• For all α < λ, fα <
∗ g.

• For all h < g, there is α < λ such that h <∗ fα.

I was able to show that, in the Gitik-Sharon model, if
−→
f is a bad scale of length κ+ in

∏
n<ω

κ+σ(n)n for

some σ ∈ ωω, then there is an inaccessible δ < κ such that, for stationarily many β ∈ Sκ+

δ+ω+1 , there is an

eub, g, for
−→
f � β such that, for every n < ω, cf(g(n)) = δ+n. I also analyzed bad points in a bad scale

−→
f

of length ℵω+1 in
∏

1≤n<ω

ℵn from a model of Cummings, Foreman, and Magidor [5], concluding that in this

model, there are stationarily many β ∈ Sℵω+1

ℵ1 such that there is an h < fβ such that the sequence of sets

〈{n | fα(n) < h(n)} | α < β〉 does not stabilize modulo bounded sets. Both of these situations are different
from the behavior of bad points in bad scales derived from Martin’s Maximum [7] and from a version of
Chang’s Conjecture [9].

The last question of Cummings and Foreman which I address is whether, in the case in which the first
PCF generator exists, there is a maximal set which carries a good scale. Let us make the following definition.

Definition Suppose κ is a singular cardinal of countable cofinality. Then Igd[κ] is the collection of A ⊆ κ
such that A is a set of regular cardinals and either A is finite or otp(A) = ω and

∏
A carries a good scale of

length κ+.

Igd[κ] is easily seen to be an ideal. The variant of Cummings and Foreman’s question which I investigated
is whether or not Igd[κ] is a P-ideal, i.e., given 〈An | n < ω〉 with An ∈ Igd[κ] for all n < ω, whether there
is a B ∈ Igd[κ] such that An ⊆∗ B for all n < ω, where ⊆∗ denotes containment modulo finite sets. The
following result shows that, under certain assumptions on cardinal characteristics of the continuum, things
can locally go wrong when trying to find such a B.

Theorem 3.4. (L-H [12]) Suppose b = ω1. Let 〈An | n < ω〉 be such that, for each n, An ⊆ An+1, An+1\An
is infinite, and

⋃
n<ω An = ω. There is a sequence of functions

−→
f = 〈fα | α < ω1〉, <∗-increasing in ωOn,

such that, for every n < ω, 〈fα � An | α < ω1〉 has an eub, gn, such that cf(gn(i)) = ω1 for all i < ω1, but
for all B ⊆ ω such that An ⊆∗ B for all n < ω, 〈fα � B | α < ω1〉 does not have an eub.
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This does not provide a counterexample to Igd[κ] being a P-ideal, since such a counterexample would
require things to go wrong simultaneously at stationarily many points. The consistency of such a counterex-
ample remains open. However, the following result shows that, in a mild forcing extension of V , there are
no such counterexamples, and suggests that the problem may have more to do with the structure of the
continuum than with PCF-theoretic behavior at higher cardinals.

Theorem 3.5. (L-H [12]) Let 〈Pγ | γ ≤ ω1〉 be a finite-support iteration of Hechler forcing. Then, in V Pω1 ,
for every singular cardinal κ of countable cofinality, Igd[κ] is a P-ideal.

Question Suppose κ is a singular cardinal of countable cofinality. Must Igd[κ] be a P-ideal?

4. Bounded Stationary Reflection

Questions of stationary reflection have played an important role in the investigation of interactions between
L-like combinatorial principles, large cardinals, and reflection principles. For example, Jensen, in [11], showed
that, if V = L and λ is a regular, uncountable cardinal that is not weakly compact, then there is a stationary
S ⊆ λ such that S does not reflect. On the other hand, Magidor, in [14], produced, starting with ω-many
supercompact cardinals, a model in which every stationary subset of ℵω+1 reflects. If a stationary set reflects,
it is also of interest to consider the cofinalities of ordinals at which it reflects. This has implications, for
example, in the study of square bracket partition relations, where Eisworth has shown [8] that, if µ is a
singular cardinal and µ+ → [µ+]2µ+ , then, for every stationary set S ⊆ µ+ and every regular λ < µ, there is

β ∈ Sµ
+

>λ such that S reflects at β. A natural question to ask is whether this is necessarily the case when µ

is a singular cardinal and every stationary subset of µ+ reflects. Let us make the following definition.

Definition Let µ be a singular cardinal. Bounded stationary reflection holds at µ+ if every stationary subset
of µ+ reflects but there is a stationary S ⊆ µ+ and a λ < µ such that S does not reflect at any ordinal β
such that cf(β) ≥ λ.

In joint work with James Cummings, it was shown that, assuming sufficiently many supercompact cardi-
nals, bounded stationary reflection is consistent at the successor of any singular cardinal µ > ℵω and that
one can achieve bounded stationary reflection at many cardinals simultaneously. More precisely, we have
the following.

Theorem 4.1. (Cummings, L-H [6]) Suppose there is a proper class of supercompact cardinals and GCH
holds. Then there is a forcing extension in which, for every singular cardinal µ > ℵω that is not a cardinal
fixed point, bounded stationary reflection holds at µ+.

Question Is it consistent, relative to large cardinals, that bounded stationary reflection holds at the suc-
cessor of every singular cardinal µ > ℵω?

5. Current and Future Work

A few open questions remain from my work described above which I plan to continue investigating. For
example, given a singular cardinal µ, I would like to understand more fully the structure of the ideal of
subsets of µ which carry good scales, in particular to determine whether it is singly generated. I am also
interested in exploring other areas of PCF theory, particularly in relation to the following important open
question.

Question Is it consistent that there is a set A ⊆ ω and a scale
−→
f in

∏
n∈A
ℵn of length ℵω+1 with stationarily

many bad points of cofinality ω2?

Also, I would like to produce a truly global version of the result on bounded stationary reflection cited
above, namely, a model in which, for every singular µ > ℵω, bounded stationary reflection holds at µ+,
and to investigate the following major questions which partially motivated the study of bounded stationary
reflection.

Question Is it consistent that there is a singular cardinal µ such that µ+ → [µ+]2µ+? Is it consistent that

there is a singular cardinal µ such that µ+ is a Jónsson cardinal?
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Another area I am interested in is the use of Prikry and Radin forcing (forcing notions commonly used to
singularize a large cardinal) to prove consistency results regarding combinatorial statements at successors of
singular cardinals. For example, it seems possible that such techniques could be used to resolve the following
question.

Question (Viale) Suppose V ⊆ W are models of ZFC, κ is an inaccessible cardinal in V , κ is a singular
cardinal of cofinality ω1 in W , and (κ+)V = (κ+)W . Does �κ,ω1 necessarily hold in W?

Solutions to problems such as this will likely involve an analysis of a forcing iteration P ∗Q, where κ is a
large cardinal, P is forcing which changes the power set of κ, and Q is Prikry or Radin forcing at κ using a
measure or measure sequence extending a measure or measure sequence in the ground model. In particular,
it will involve understanding the quotient forcing P ∗Q/Q̄, where Q̄ is Prikry or Radin forcing defined using
the ground model measure or measure sequence. Such quotients are currently not well-understood and are
of interest in their own right.
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