Chasing Nested Convex Bodies

C.J. Argue

Joint with Sébastien Bubeck, Michael Cohen

Anupam Gupta, Yin Tat Lee

The Problem – Formal Definition

- ▶ Given convex sets K¹, K², K³, ... in ℝ^d
 ▶ Choose xⁱ ∈ Kⁱ online (x⁰ = 0)
- Cost $ALG^t = \sum_{i=1}^t ||x^i x^{i-1}||$

Goal – minimize competitive ratio

 $\operatorname{cr}(ALG) \coloneqq \max_{\sigma,t} \frac{ALG^t(\sigma)}{OPT^t(\sigma)}$

 $\triangleright \sigma$ arbitrary instance

▶ $OPT^t(\sigma)$ optimal offline cost

Motivation

- Metrical task systems (MTS)
 - ► Given convex functions $f_1, f_2, f_3, ...$
 - Choose x^i online $(x^0 = 0)$
 - Cost $ALG^{t} = \sum_{i=1}^{t} ||x^{i} x^{i-1}|| + f_{i}(x^{i})$
 - Convex body chasing: role of geometry in MTS
- Related to k-server

Results

FL 93] \sqrt{d} lower bound,

Competitive general chasing (d = 2 case)

- ▶ [BB+ 17] *d*^{0(d)}-competitive nested chasing
- [AB+ 18] O(d log d)-competitive nested chasing
- ► [BL+ 18] $O(\sqrt{d \log d})$ -competitive nested chasing, exp(d)-competitive general chasing

Talk outline

- 1. Warm-up ideas from general chasing
- 2. *Centroid* and *Recursive Greedy* two motivating ideas
- 3. Recursive Centroid $O(d \log d)$ -competitive, analysis

Part 1 – Warm-up ideas

A lower bound, a bad algorithm, and two reductions

Lower Bound

Lower Bound

Lower Bound

ALG **O**PT

 $ALG \ge \sqrt{2} \cdot OPT$ $ALG \ge \sqrt{d} \cdot \frac{OPT}{OPT}$

- ALG unbounded
 OPT = O(1)
 Not competitive 🛞
- **b** Bounded: $d^{O(d)}$ -competitive

Reductions

• Bounded: $diam(K^1) = O(1)$, $OPT = \Omega(1)$

► $f(d) \cdot diam(K^1)$ total cost \Rightarrow f(d)-competitive

Guess-and-double

► Tighten: end when
$$diam(K^t) \le \frac{1}{2} diam(K^1)$$

Apply repeatedly

Cost decreases geometrically

Recap of Part 1

- $\blacktriangleright \sqrt{d}$ lower bound
- Greedy is not good
- Suffices to halve diameter with bounded cost

Part 2 – Two initial ideas

Centroid, recursive greedy, and why neither is good enough

• Move to "center" of K^t

► (*K^t* bounded)

• Centroid of
$$A \subseteq \mathbb{R}^n$$
 is $\mu(A) \coloneqq \int_A x \, dx$
Centroid Algorithm: $x^t = \mu(K^t)$

• Motivation: cut large portion of K^t each step

Advantage of Centroid

- ► Grünbaum ['60] $\Rightarrow Vol(K^t) \le (1-c) \cdot Vol(K^{t-1})$ $\le (1-c)^t \cdot Vol(K^0)$
- Volume drops $O(2^d)$ in O(d) steps
- Step cost at most $diam(K^t) = O(1)$
- \triangleright O(d) total cost?

Problem with Centroid

Problem with Centroid

• • • • • • • • • • • • • • • • • •

Summary – Centroid

- \blacktriangleright Vol(K^t) drops quickly
- \blacktriangleright Diam(K^t) stays constant

- "Refuse to move back and forth"
- ▶ In \mathbb{R}^1 , run *Greedy*
- \blacktriangleright In \mathbb{R}^d
 - Fix orthogonal hyperplanes S_1, \dots, S_d
 - ▶ For *i* = 1, ..., *d*
 - ▶ Run RG^{d-1} on sets $S_i \cap K^t$

 RG^{d-1} – Recursive Greedy in (d-1) dimensions

Idea 2 – *Recursive Greedy* Real World ALG's world

Diameter III

Competitive algorithm [BB+ '17]

Problem with Recursive Greedy

- \blacktriangleright $d^{O(d)}$ -competitive
 - ► Worse than *Greedy!*
- Expensive recursive calls
- ▶ Diameter ↓ only $O\left(\sqrt{1-1/d}\right)$ after *d* recursive calls

Recap of Part 2

Centroid

- Volume drops quickly
- Diameter stays constant
- Recursive Greedy
 - Controls individual dimensions
 - Expensive recursive calls
 - Diameter shrinks slowly

Part 3 – A better idea

Recursive Centroid: fusion of Centroid and Recursive Greedy

New Ideas

- Play centroid in recursion
- Recursion on skinny subspace
 - Cheap
 - ► Hyperplane separation \Rightarrow cut parallel to skinny subspace
 - Progress on fat subspace

Skinny subspace

- ► Directional width $w(K, v) \coloneqq \max_{x,y \in K} \langle x y, v \rangle$
- Skinny direction v such that $w(K^t, v) \leq 1/d^2$
- \blacktriangleright S := span of k skinny directions
- ► $F \coloneqq S^{\perp}$ (fat subspace)

Skinny and Fat subspace

 $S = \{0\}$

Skinny and Fat subspace

$$S = \{0\}$$

Skinny and Fat subspace

Recursive Centroid

• While $diam(K^t) \ge 1/2 \cdot diam(K^1)$

► If $S_t \neq \{0\}$

 $\blacktriangleright \overline{t} \leftarrow t$

▶ Run $RC^{\dim(S_{\bar{t}})}$ on $K^t \cap (x_{\bar{t}} + S_{\bar{t}})$ until empty

 $\blacktriangleright x_t \leftarrow \mu(K^t)$

▶ While \exists skinny direction $v \in S_t^{\perp}$

 $\blacktriangleright S_t \leftarrow span(S_t, v)$

 $RC^{\dim(S_{\bar{t}})}$ – Recursive Centroid in $\dim(S_{\bar{t}})$ dimensions

Recursive Centroid

Recursive Centroid is $O(d \log d)$ -competitive [ABCGL '18]

Recall \sqrt{d} lower bound

Proof outline

- ▶ Potential $\Phi^t \coloneqq Vol(Proj_F(K^t))$
- ▶ 'Step' = Recursive call + move to centroid of K^t
- Cost of 1 step = O(1)
- \triangleright $O(d \log d)$ steps
- \triangleright $O(d \log d)$ total cost

Proof part I – A single step

$$\Phi^t = Vol(Proj_F(K^t))$$

▶ Cost *0*(1)

- ▶ Recursion: $O(d \log d) \cdot 1/d^2 = o(1)$
- Move to centroid: O(1)
- Φ^t drops (1 c)
 - \triangleright K^t cut by halfspace parallel to S

Proof part II – $O(d \log d)$ steps

$$\Phi^t = Vol(Proj_F(K^t))$$

•
$$\Phi^t \operatorname{drops} \ge (1-c)^m$$

- ▶ *m* steps
- ▶ Φ^t increases $\leq d^{O(d)}$
 - ► *F* changes
- $\blacktriangleright \Phi^{T-1} \ge d^{-O(d)}$
 - ▶ $Proj_F(K^{T-1})$ contains ball of radius $1/poly(d) = d^{-O(1)}$

Proof part II – $O(d \log d)$ steps

$$\Phi^t = Vol(Proj_F(K^t))$$

- $\Phi^t \operatorname{drops} \ge (1-c)^m$
- Φ^t increases $\leq d^{O(d)}$
- $\blacktriangleright \Phi^{T-1} \ge d^{-O(d)}$

 $d^{O(d)}(1-c)^{m-1} \ge \Phi^{T-1}/\Phi^0 \ge d^{-O(d)}$ $m \le O(d \log d)$

Recap of Part 3

Recursion on skinny subspaces

Cheap, good cuts

- Play centroid
 - Volume drop
- ► K^t bounded, recursion cheap \Rightarrow step cost O(1)
- ► $Vol(Proj_F(K^t))$ drops, bounded $\Rightarrow O(d \log d)$ steps

Open questions

- poly(d)-competitive general chasing
- $\blacktriangleright exp(d)$ lower bound for general chasing
- Efficient algorithms

Thank you!

Questions?

In memory of Michael Cohen

References

- "A Nearly-Linear Bound for Chasing Nested Convex Bodies" Argue Bubeck Cohen Gupta Lee, SODA '19
- "Nested Convex Bodies are Chasable" Bansal Bohm Elias Koumoutsos Umboh, SODA '18
- "Chasing Nested Convex Bodies Nearly Optimally," "Competitively Chasing Convex Bodies" Bubeck Lee Li Selke, Preprints '18
- "Chasing Convex Bodies and Functions" Friedman Linial, Discrete and Computational Geometry '93